Câu hỏi:
19/05/2022 343
Một mạch dao động LC lí tưởng có \(C = {2.10^{ - 9}}F\) đang dao động điện từ tự do. Cường độ dòng điện tức thời trong mạch và hiệu điện thế tức thời giữa hai bản tụ điện lần lượt là i và u. Sự phụ thuộc của \({i^2}\) vào \({u^2}\) được biểu diễn bằng một đoạn đồ thị như hình vẽ. Giá trị của L là

Quảng cáo
Trả lời:
Phương pháp:
+ Đọc đồ thị
+ Sử dụng biểu thức: \(\frac{{{i^2}}}{{I_0^2}} + \frac{{{u^2}}}{{U_0^2}} = 1\)
+ Sử dụng biểu thức: \(\frac{{CU_0^2}}{2} = \frac{{LI_0^2}}{2}\)
Cách giải:
Trong mạch LC ta có: \(\frac{{{i^2}}}{{I_0^2}} + \frac{{{u^2}}}{{U_0^2}} = 1\)
Từ đồ thị, ta có:
+ Tại \({u^2} = 0\) thì \({i^2} = a \Rightarrow I_0^2 = a\)
+ Tại \({u^2} = 4\) thì \({i^2} = a - {5.10^{ - 5}}\) ta suy ra: \(\frac{{a - 5 \cdot {{10}^{ - 5}}}}{{I_0^2}} + \frac{4}{{U_0^2}} = 1 \Leftrightarrow \frac{{a - 5 \cdot {{10}^{ - 5}}}}{a} + \frac{4}{{U_0^2}} = 1 \Rightarrow U_0^2 = 80000{\rm{a}}\)
Lại có:
\(I_0^2 = \frac{C}{L}U_0^2 \Leftrightarrow a = \frac{{{{2.10}^{ - 9}}}}{L} \cdot 80000a \Rightarrow L = {1,6.10^{ - 4}}H = 0,16mH\)
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng biểu thức xác định vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Cách giải:
Vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Vân tối thứ hai ứng với k =1 ⇒Khoảng cách từ vân sáng trung tâm đến vân tối thứ hai: \({x_{t2}} = \left( {1 + \frac{1}{2}} \right)i = \frac{3}{2}i\)
Chọn D.
Lời giải
Phương pháp:
Trong quá trình truyền sóng, vecto cường độ điện trường \(\overrightarrow E \) và vecto cảm ứng từ \(\overrightarrow B \) biến thiên tuần hoàn theo không gian và thời gian, và luôn đồng pha.
Cách giải:
Do \(\overrightarrow E \) và \(\overrightarrow B \) biến thiên cùng pha với nhau nên: \(\frac{E}{{{E_0}}} = \frac{B}{{{B_0}}}{\rm{ hay }}{\left( {\frac{E}{{{E_0}}}} \right)^2} = {\left( {\frac{B}{{{B_0}}}} \right)^2}\)
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.