Trong một đoạn mạch điện xoay chiều RLC, công suất tức thời p thay đổi theo thời gian t. Hình bên là đồ thị biểu diễn sự phụ thuộc của p vào t. Hệ số công suất của mạch là

Quảng cáo
Trả lời:
Phương pháp:
+ Đọc đồ thị p-t
+ Sử dung biểu thức tính công suất tức thời: p = ui
+ Sử dụng phương trình lượng giác.
Cách giải:
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{u = {U_0}\cos \left( {\omega t + {\varphi _u}} \right)}\\{i = {I_0}\cos \left( {\omega t + {\varphi _i}} \right)}\end{array}} \right.\)
Đặt: \(\left\{ {\begin{array}{*{20}{l}}{{\varphi _u} + {\varphi _i} = x}\\{{\varphi _u} - {\varphi _i} = \varphi }\end{array}} \right.\)
Công suất tức thời: \(p = ui = UI.[\cos (2\omega t + x) + \cos \varphi ]\)
Từ đồ thị, ta thấy:
Công suất:
Tại
\( \Leftrightarrow \cos \left( {2\omega {t_1} + x} \right) = \cos \left( {2\omega {t_2} + x} \right) \Leftrightarrow \cos \left( {2.120\pi \frac{{{{25.10}^{ - 3}}}}{{54}} + x} \right) = \cos \left( {2.120\pi \frac{{25}}{9} \cdot {{10}^{ - 3}} + x} \right)\)
Thay vào (1) ta suy ra:
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng biểu thức xác định vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Cách giải:
Vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Vân tối thứ hai ứng với k =1 ⇒Khoảng cách từ vân sáng trung tâm đến vân tối thứ hai: \({x_{t2}} = \left( {1 + \frac{1}{2}} \right)i = \frac{3}{2}i\)
Chọn D.
Lời giải
Phương pháp:
Trong quá trình truyền sóng, vecto cường độ điện trường \(\overrightarrow E \) và vecto cảm ứng từ \(\overrightarrow B \) biến thiên tuần hoàn theo không gian và thời gian, và luôn đồng pha.
Cách giải:
Do \(\overrightarrow E \) và \(\overrightarrow B \) biến thiên cùng pha với nhau nên: \(\frac{E}{{{E_0}}} = \frac{B}{{{B_0}}}{\rm{ hay }}{\left( {\frac{E}{{{E_0}}}} \right)^2} = {\left( {\frac{B}{{{B_0}}}} \right)^2}\)
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.