Câu hỏi:

12/07/2024 3,191

Trong tình huống mở đầu, gọi x là số vé loại 1 bán được và y là số vé loại 2 bán được. Viết biểu thức tính số tiền bán vé thu được (đơn vị nghìn đồng) ở rạp chiếu phim đó theo x và y.

a) Các số nguyên không âm x và y thỏa mãn điều kiện gì để số tiền bán vé thu được đạt tối thiểu 20 triệu đồng?

b) Nếu số tiền bán vé thu được nhỏ hơn 20 triệu đồng thì x và y thỏa mãn điều kiện gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số vé loại 1 bán được là x (vé) (x *).

Gọi số vé loại 2 bán được là y (vé) (y *)

Tổng số tiền bán vé thu được là 50x + 100y (nghìn đồng).

a) Để số tiền bán vé đạt tối thiểu 20 triệu đồng (20 000 nghìn đồng) thì x; y phải thỏa mãn:

50x + 100y 20 000.

b) Nếu số vé bán được nhỏ hơn 20 triệu đồng (20 000 nghìn đồng) thì x; y phải thỏa mãn điều kiện:

50x + 100y < 20 000.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) 2x + 3y > 6 là bất phương trình bậc nhất hai ẩn vì nó có dạng ax + by > c.

với a, b không đồng thời bằng 0.

b) 22x + y ≤ 0 4x + y 0 là bất phương trình bậc nhất hai ẩn vì nó có dạng ax + by c, với a, b không đồng thời bằng 0.

c) 2x2 – y ≥ 1 không là bất phương trình bậc nhất hai ẩn vì nó có x2 (ẩn x với bậc là 2) với hệ số khác 0.

Lời giải

a)

Vẽ đường thẳng d: 3x + 2y – 300 = 0 trên mặt phẳng tọa độ.

Lấy gốc tọa độ O(0; 0) và tính 3.0 + 2.0 = 0 < 300.

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng d không chứa gốc tọa độ và cả đường thẳng d (miền tô màu kể cả biên).

Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ: (ảnh 1)

b)

Vẽ đường thẳng d’: 7x + 20y = 0 trên mặt phẳng tọa độ.

Lấy điểm M(200; 200) và tính 7.200 + 20.200 = 5 400 > 0.

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng d’ không chứa điểm M và không chứa đường thẳng d’ (miền tô màu không kể biên).
Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ: (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay