Gọi m là số thực dương sao cho đường thẳng \[y = m + 1\] cắt đồ thị hàm số \[y = {x^4} - 3{x^2} - 2\] tại hai điểm A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Kết luận nào sau đây là đúng?
Quảng cáo
Trả lời:
Phương pháp giải:
+) Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình hoành độ giao điểm có hai nghiệm phân biệt.
+) Tam giác OAB vuông tại O \[ \Rightarrow \overrightarrow {OA} .\overrightarrow {OA} = 0\]
Giải chi tiết:
PT hoành độ giao điểm là
Hai đồ thị có 2 giao điểm \[ \Leftrightarrow \left( 1 \right) \Leftrightarrow \] có 2 nghiệm trái dấu \[ \Leftrightarrow {t_1}{t_2} < 0 \Leftrightarrow - m - 3 < 0 \Leftrightarrow m > - 3{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)\]
Ta có : \[\Delta = 9 - 4\left( { - m - 3} \right) = 21 + 4m\]
Khi đó \[\left\{ {\begin{array}{*{20}{l}}{{t_1} = \frac{{3 + \sqrt {21 + 4m} }}{2}}\\{{t_2} = \frac{{3 - \sqrt {21 + 4m} }}{2}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_A} = \sqrt {{t_1}} }\\{{x_B} = - \sqrt {{t_1}} }\end{array}} \right.\]
Suy ra tọa độ hai điểm A,B là \[A\left( {\sqrt {{t_1}} ;m + 1} \right),B\left( { - \sqrt {{t_1}} ;m + 1} \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {OA} = \left( {\sqrt {{t_1}} ;m + 1} \right)\\\overrightarrow {OB} = \left( { - \sqrt {{t_1}} ;m + 1} \right)\end{array} \right.\]
Tam giác OAB vuông tại O \[ \Rightarrow \overrightarrow {OA} .\overrightarrow {OB} = 0 \Leftrightarrow - {t_1} + {\left( {m + 1} \right)^2} = 0 \Leftrightarrow - \frac{{3 + \sqrt {21 + 4m} }}{2} + {\left( {m + 1} \right)^2} = 0\]
Giải PT kết hợp với điều kiện \[\left( 2 \right) \Rightarrow m = 1 \Rightarrow m \in \left( {\frac{3}{4};\frac{5}{4}} \right)\]
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Dựa vào giả thiết bài toán, biểu diễn mối quan hệ giữa x,y kết hợp với điều kiện của x, y để tìm hệ điều kiện.
Giải chi tiết:
Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng.
Vì cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên ta có: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right..\]
Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và \[0,6{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒⇒ Từ xx tấn nguyên liệu loại I ta chiết xuất được: \[20x{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[0,6y{\mkern 1mu} {\mkern 1mu} kg\]chất B.
Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được \[10{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒ Từ y là số tấn nguyên liệu loại II ta chiết xuất được: \[10y{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5y{\mkern 1mu} {\mkern 1mu} kg\] chất B.
Như vậy ta chiết xuất được \[20x + 10y{\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất A và \[0,6x + 1,5y{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất B.
Khi đó ta có hệ điều kiện là: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{20x + 10y \ge 140}\\{0,6x + 1,5y \ge 9}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{2x + y \ge 14}\\{2x + 5y \ge 30}\end{array}} \right..\]
Lời giải
Phương pháp giải:
Số lượng cá thể = mật độ x diện tích khu phân bố
Giải chi tiết:
Xét các phát biểu:
I: đúng
II: đúng
III: đúng, mật độ quần thể B sau khi tăng 5% là \[\frac{{3000 \times (1 + 0,05)}}{{120}} = 26,25\] cá thể/ ha
IV: Sai: quần thể C tăng thêm: 2080 × 5% = 104 cá thể.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.