Xét số phức z thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức z luôn thuộc một đường tròn cố đinh. Bán kính của đường tròn đó bằng:
Quảng cáo
Trả lời:
Phương pháp giải:
Gọi \[z = a + bi\], đưa số phức z\[\frac{{z + 2}}{{z - 2i}} = A + Bi\], khi đó \[\frac{{z + 2}}{{z - 2i}} = A + Bi\] là số thuần ảo \[ \Leftrightarrow A = 0\]. Từ đó suy ra tập hợp các điểm biểu diễn số phức z.
Giải chi tiết:
Gọi \[z = a + bi\] ta có:
\[\frac{{z + 2}}{{z - 2i}} = \frac{{\left( {a + 2} \right) + bi}}{{a + \left( {b - 2} \right)i}} = \frac{{\left[ {\left( {a + 2} \right) + bi} \right]\left[ {a - \left( {b - 2} \right)i} \right]}}{{\left[ {a + \left( {b - 2} \right)i} \right]\left[ {a - \left( {b - 2} \right)i} \right]}}\]
\[ = \frac{{\left( {a + 2} \right)a - \left( {a + 2} \right)\left( {b - 2} \right)i + abi + b\left( {b - 2} \right)}}{{{a^2} + {{\left( {b - 2} \right)}^2}}}\]\[ = \frac{{{a^2} + 2a + {b^2} - 2b}}{{{a^2} + {{\left( {b - 2} \right)}^2}}} - \frac{{\left( {a + 2} \right)\left( {b - 2} \right) - ab}}{{{a^2} + {{\left( {b - 2} \right)}^2}}}i\]
\[ \Rightarrow {a^2} + 2a + {b^2} - 2b = 0\]
Để số trên là số thuần ảo ⇒ có phần thực bằng 0 \[ \Rightarrow {a^2} + 2a + {b^2} - 2b = 0\]
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm \[I\left( { - 1;1} \right)\], bán kính \[R = \sqrt {{{\left( { - 1} \right)}^2} + {1^2} - 0} = \sqrt 2 \].
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Dựa vào giả thiết bài toán, biểu diễn mối quan hệ giữa x,y kết hợp với điều kiện của x, y để tìm hệ điều kiện.
Giải chi tiết:
Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng.
Vì cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên ta có: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right..\]
Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và \[0,6{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒⇒ Từ xx tấn nguyên liệu loại I ta chiết xuất được: \[20x{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[0,6y{\mkern 1mu} {\mkern 1mu} kg\]chất B.
Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được \[10{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒ Từ y là số tấn nguyên liệu loại II ta chiết xuất được: \[10y{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5y{\mkern 1mu} {\mkern 1mu} kg\] chất B.
Như vậy ta chiết xuất được \[20x + 10y{\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất A và \[0,6x + 1,5y{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất B.
Khi đó ta có hệ điều kiện là: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{20x + 10y \ge 140}\\{0,6x + 1,5y \ge 9}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{2x + y \ge 14}\\{2x + 5y \ge 30}\end{array}} \right..\]
Lời giải
Phương pháp giải:
Số lượng cá thể = mật độ x diện tích khu phân bố
Giải chi tiết:
Xét các phát biểu:
I: đúng
II: đúng
III: đúng, mật độ quần thể B sau khi tăng 5% là \[\frac{{3000 \times (1 + 0,05)}}{{120}} = 26,25\] cá thể/ ha
IV: Sai: quần thể C tăng thêm: 2080 × 5% = 104 cá thể.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.