Câu hỏi:

08/06/2022 283

Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình mặt cầu (S) có tâm \[I(2{\mkern 1mu} ;{\mkern 1mu} 0;1)\] và tiếp xúc với đường thẳng d: \[\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\].

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

+ Mặt cầu tâm I tiếp xúc với đường thẳng d có bán kính \[R = d\left( {I;d} \right)\].

+ Khoảng cách từ II đến dd được tính theo công thức: \[d\left( {I;d} \right) = \frac{{\left| {\left[ {\overrightarrow {IM} ;\overrightarrow {{u_d}} } \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}}\] với M là điểm bất kì thuộc d, \[\overrightarrow {{u_d}} \] là 1 VTCP của đường thẳng d.

+ Phương trình mặt cầu (S) tâm \[I\left( {a;b;c} \right)\] bán kính R có phương trình là: \[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\]

Giải chi tiết:

Gọi \[\overrightarrow {{u_d}} = \left( {1;2;1} \right)\] là 1 VTCP của đường thẳng d. Lấy điểm \[M\left( {1;0;2} \right) \in d\]:

\[\overrightarrow {IM} = \left( { - 1;0;1} \right) \Rightarrow \left[ {\overrightarrow {IM} ,\vec u} \right] = \left( { - 2;2; - 2} \right)\]

\[ \Rightarrow R = d\left( {I;d} \right) = \frac{{\left| {\left[ {\overrightarrow {MI} ,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = \frac{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {{\left( { - 2} \right)}^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 .\]

Vậy phương trình mặt cầu tâm \[I\left( {2;0;1} \right)\] bán kính \[\sqrt 2 \]: \[{\left( {x - 2} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140 kg chất A và 9 kg chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và 0,6 kg chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10 kg chất A và 1,5 kg chất B. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II.

Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng. Khi đó hệ điều kiện của \[x,{\mkern 1mu} {\mkern 1mu} y\] để tính số nguyên liệu mỗi loại cần dùng là:

Xem đáp án » 08/06/2022 18,904

Câu 2:

Truyện cổ tích Tấm Cám thể hiện nhiều mối quan hệ. Câu nào bên dưới đây không thể hiện mối quan hệ chính?

Xem đáp án » 08/06/2022 8,520

Câu 3:

Biết rằng phát biểu “Nếu hôm nay trời mưa thì tôi ở nhà” là phát biểu sai. Thế thì phát biểu nào sau đây là phát biểu đúng?

Xem đáp án » 08/06/2022 8,246

Câu 4:

Đâu không phải nguyên nhân thực dân Pháp chọn Đà Nẵng làm điểm mở đầu cuộc chiến tranh xâm lược ở Việt Nam?

Xem đáp án » 09/06/2022 7,031

Câu 5:

Making a list of important tasks can help us _______.

Xem đáp án » 15/10/2023 6,035

Câu 6:

Giả sử quần thể động vật này ở thời điểm ban đầu có 110000 cá thể, quần thể này có tỉ lệ sinh là 12%/năm, xuất cư 2%/ năm, tử vong 8%/ năm, nhập cư 4%/năm. Sau 2 năm, số cá thể trong quần thể được dự đoán là bao nhiêu?

Xem đáp án » 09/06/2022 4,502

Câu 7:

He's always busy. He has _________ time to relax.

Xem đáp án » 08/06/2022 4,218
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua