Cho a, b, c, d là các số nguyên dương thỏa mãn \[{\log _a}b = \frac{3}{2};{\mkern 1mu} {\mkern 1mu} {\log _c}d = \frac{5}{4}\]. Nếu \[a - c = 9\] thì \[b - d\] nhận giá trị nào ?
Quảng cáo
Trả lời:
Phương pháp giải:
\[{\log _a}b = x \Leftrightarrow {a^x} = b\]
Giải chi tiết:
\[{\log _a}b = \frac{3}{2} \Rightarrow b = {a^{\frac{3}{2}}};{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\log _c}d = \frac{5}{4} \Rightarrow d = {c^{\frac{5}{4}}}\]
Do b,d là các số nguyên ⇒ Đặt \[a = {x^2};{\mkern 1mu} {\mkern 1mu} c = {y^4}{\mkern 1mu} {\mkern 1mu} \left( {x,y \in {Z^ + }} \right)\]
\[ \Rightarrow a - c = \left( {x - {y^2}} \right)\left( {x + {y^2}} \right) = 9 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - {y^2} = 1}\\{x + {y^2} = 9}\end{array}} \right.\]
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{{y^2} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{y = 2}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{b = {5^3} = 125}\\{d = {2^5} = 32}\end{array}} \right. \Rightarrow b - d = 93\]
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
Dựa vào giả thiết bài toán, biểu diễn mối quan hệ giữa x,y kết hợp với điều kiện của x, y để tìm hệ điều kiện.
Giải chi tiết:
Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng.
Vì cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên ta có: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right..\]
Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và \[0,6{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒⇒ Từ xx tấn nguyên liệu loại I ta chiết xuất được: \[20x{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[0,6y{\mkern 1mu} {\mkern 1mu} kg\]chất B.
Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được \[10{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5{\mkern 1mu} {\mkern 1mu} kg\] chất B
⇒ Từ y là số tấn nguyên liệu loại II ta chiết xuất được: \[10y{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5y{\mkern 1mu} {\mkern 1mu} kg\] chất B.
Như vậy ta chiết xuất được \[20x + 10y{\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất A và \[0,6x + 1,5y{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất B.
Khi đó ta có hệ điều kiện là: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{20x + 10y \ge 140}\\{0,6x + 1,5y \ge 9}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{2x + y \ge 14}\\{2x + 5y \ge 30}\end{array}} \right..\]
Lời giải
Phương pháp giải:
Số lượng cá thể = mật độ x diện tích khu phân bố
Giải chi tiết:
Xét các phát biểu:
I: đúng
II: đúng
III: đúng, mật độ quần thể B sau khi tăng 5% là \[\frac{{3000 \times (1 + 0,05)}}{{120}} = 26,25\] cá thể/ ha
IV: Sai: quần thể C tăng thêm: 2080 × 5% = 104 cá thể.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.