Câu hỏi:

08/06/2022 488 Lưu

Thầy Lương vừa đưa 4 học sinh An, Bình, Cương và Dung đi thi học sinh giỏi về, mọi người đến thăm hỏi. Thầy trả lời: “Cả 4 em đều đạt giải!” và đề nghị mọi người đoán xem.

- Hòa nhanh nhẩu nói luôn: “Theo em thì An, Bình đạt giải Nhì, còn Cương, Dung đạt giải Khuyến khích”.

- Kiên lắc đầu, nói: “Không phải! An, Cương, Dung đều đạt giải Nhất, chỉ có Bình đạt giải Ba”.

- Linh thì cho là: “Chỉ có Bình đạt giải Nhất, còn ba bạn An, Cương, Dung đều đạt giải Ba”.

- Minh lại cho rằng: “Chỉ có Cương, Dung đạt giải Nhì, còn An, Bình đều đạt giải Khuyến khích, không ai đạt giải Đặc biệt cả”.

Nghe các bạn đoán xong, thầy mỉm cười và nói: “Các em đoán sai cả rồi! Tất cả các ý đều sai!”.

Số bạn đạt giải Đặc biệt là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Dựa vào giả thiết, lập bảng các giải mà các bạn An, Bình, Cương, Dung có thể nhận được theo lời nói của các bạn Hòa, Kiên, Linh, Minh.

- Dựa vào giả thiết tất cả các bạn Hòa, Kiên, Linh, Minh đều nói sai và “tất cả các bạn đều đạt giải” để suy ra các giải mà mỗi bạn đã đạt được.

Giải chi tiết:

Theo dự đoán của các Hòa, Kiên, Linh, Minh ta có bảng sau:

Thầy Lương vừa đưa 4 học sinh An, Bình, Cương và Dung đi thi học sinh giỏi về, mọi người đến thăm hỏi. Thầy trả lời: “Cả 4 em đều đạt giải!” và đề nghị mọi người đoán xem.  - Hòa nhanh nhẩu nói luôn: “Theo em thì An, Bình đạt giải Nhì, còn Cương, Dung đạt giải Khuyến khích”. (ảnh 1)

Dựa vào bảng trên và thầy Lương nói các bạn Hòa, Kiên, Linh, Minh đều đoán sai hết nên ta có các bạn An, Bình, Cương, Dung đều không đạt các giải Nhất, Nhì, Ba và Khuyến khích.

Mà thầy Lương nói: “Tất cả các bạn đều đạt giải”.

Vậy cả 4 bạn đều đạt giải Đặc biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

Dựa vào giả thiết bài toán, biểu diễn mối quan hệ giữa x,y kết hợp với điều kiện của x, y để tìm hệ điều kiện.

Giải chi tiết:

Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng.

Vì cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên ta có: \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right..\]

Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và \[0,6{\mkern 1mu} {\mkern 1mu} kg\] chất B

⇒⇒ Từ xx tấn nguyên liệu loại I ta chiết xuất được: \[20x{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[0,6y{\mkern 1mu} {\mkern 1mu} kg\]chất B.

Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được \[10{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5{\mkern 1mu} {\mkern 1mu} kg\] chất B

Từ y là số tấn nguyên liệu loại II  ta chiết xuất được:  \[10y{\mkern 1mu} {\mkern 1mu} kg\] chất A và \[1,5y{\mkern 1mu} {\mkern 1mu} kg\] chất B.

Như vậy ta chiết xuất được \[20x + 10y{\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất A và \[0,6x + 1,5y{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {kg} \right)\] chất B.

Khi đó ta có hệ điều kiện là:  \[\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{20x + 10y \ge 140}\\{0,6x + 1,5y \ge 9}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 10}\\{0 \le y \le 9}\\{2x + y \ge 14}\\{2x + 5y \ge 30}\end{array}} \right..\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP