Câu hỏi:
12/07/2024 6,821Câu hỏi trong đề: Đề thi Cuối kì học kỳ 2 Toán 6 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Số học sinh giỏi của lớp là: \(8:\frac{2}{3} = 12\) (học sinh)
Số học sinh khá của lớp là: 12 : 80% = 15 (học sinh)
Số học sinh trung bình của lớp là: \(\frac{7}{9}.(15 + 12) = 21\) (học sinh)
Số học sinh lớp \[6A\] là: 12 + 15 + 21 = 48 (học sinh).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
a) Quan sát bảng ta thấy bóng xanh được lấy 25 lần.
Xác suất của thực nghiệm sự kiện lấy được bóng xanh là: \(\frac{{25}}{{100}} = 0,25\)
b) Quan sát bảng ta thấy bóng đỏ được lấy ra 23 lần.
Do đó số lần Minh không lấy ra bóng đỏ là 100 – 23 = 77 (lần).
Xác suất của thực nghiệm sự kiện lấy ra không là màu đỏ là: \(\frac{{77}}{{100}} = 0,77\)
Lời giải
Hướng dẫn giải:
Ta có:
\(A = \frac{1}{{{2^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{6^2}}} + ... + \frac{1}{{{{100}^2}}}\)
\( = \frac{1}{{{2^2}}}\left( {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}}} \right)\).
Mặt khác ta có: \(\frac{1}{{{2^2}}} = \frac{1}{{2.2}} < \frac{1}{{1.2}} = \frac{{2 - 1}}{{1.2}} = \frac{2}{{1.2}} - \frac{1}{{1.2}} = 1 - \frac{1}{2}\)
\(\frac{1}{{{3^2}}} = \frac{1}{{3.3}} < \frac{1}{{2.3}} = \frac{{3 - 2}}{{2.3}} = \frac{3}{{2.3}} - \frac{2}{{2.3}} = \frac{1}{2} - \frac{1}{3}\)
………………..
\(\frac{1}{{{{50}^2}}} = \frac{1}{{50.50}} < \frac{1}{{49.50}} = \frac{{50 - 49}}{{49.50}} = \frac{{50}}{{49.50}} - \frac{{49}}{{49.50}} = \frac{1}{{49}} - \frac{1}{{50}}\)
Do đó \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}} < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{{49}} - \frac{1}{{50}}\)
Suy ra \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}} < 1 - \frac{1}{{50}}\)
\(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}} < \frac{{49}}{{50}} < \frac{{50}}{{50}} = 1\)
\(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}} < 1\)
Từ đó ta có: \(1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}} < 1 + 1 = 2\)
\[A = \frac{1}{{{2^2}}}\left( {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{50}^2}}}} \right) < \frac{1}{4}.2 = \frac{1}{2}\].
Vậy \(A < \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Dạng 1: Thực hiện tính, viết dưới dạng lũy thừa
Dạng 4: Một số bài tập nâng cao về lũy thừa
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 2)
Dạng 4: Trung điểm của đoạn thẳng có đáp án
Dạng 1: tỉ số của hai đại lượng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận