Câu hỏi:

12/07/2024 3,593

Tìm x biết:

a) \(\frac{3}{5}x - \frac{1}{2} = \frac{1}{7}\)

b) (4,5-2x).117=1114

c) \[80\% + \frac{7}{6}:x = \frac{1}{6}\]

d) \(\frac{3}{4} - \left( {4\frac{1}{2} + 3x} \right) = - 1\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

a) \(\frac{3}{5}x - \frac{1}{2} = \frac{1}{7}\)

\(\frac{3}{5}x = \frac{1}{7} + \frac{1}{2}\)

\(\frac{3}{5}x = \frac{2}{{14}} + \frac{7}{{14}}\)

\(\frac{3}{5}x = \frac{9}{{14}}\)

\(x = \frac{9}{{14}}:\frac{3}{5}\)

\(x = \frac{9}{{14}}.\frac{5}{3}\)

\(x = \frac{{15}}{{14}}\)

Vậy \(x = \frac{{15}}{{14}}\).

b) \(\left( {4,5 - 2x} \right).\frac{{11}}{7} = \frac{{11}}{{14}}\)

\[\frac{9}{2} - 2x = \frac{{11}}{{14}}:\frac{{11}}{7}\]

\(\frac{9}{2} - 2x = \frac{{11}}{{14}}.\frac{7}{{11}}\)

\(\frac{9}{2} - 2x = \frac{1}{2}\)

\(2x = \frac{9}{2} - \frac{1}{2}\)

\(2x = \frac{8}{2}\)

2x = 4

x = 2.

Vậy x = 2.

c) \[80\% + \frac{7}{6}:x = \frac{1}{6}\]

\(\frac{{80}}{{100}} + \frac{7}{6} = \frac{1}{6}\)

\[\frac{4}{5} + \frac{7}{6}:x = \frac{1}{6}\]

\[\frac{7}{6}:x = \frac{1}{6} - \frac{4}{5}\]

\[\frac{7}{6}:x = \frac{5}{{30}} - \frac{{24}}{{30}}\]

\[\frac{7}{6}:x = \frac{{ - 19}}{{30}}\]      

\[x = \frac{7}{6}:\frac{{ - 19}}{{30}}\]

\(x = \frac{7}{6}.\frac{{30}}{{ - 19}}\)

\[x = \frac{{ - 35}}{{19}}\]

Vậy \[x = \frac{{ - 35}}{{19}}\].

d) \(\frac{3}{4} - \left( {4\frac{1}{2} + 3x} \right) = - 1\)

\(4\frac{1}{2} + 3x = \frac{3}{4} - \left( { - 1} \right)\)

\(\frac{9}{2} + 3x = \frac{3}{4} + 1\)

\(\frac{9}{2} + 3x = \frac{3}{4} + \frac{4}{4}\)

\(\frac{9}{2} + 3x = \frac{7}{4}\)

\(3x = \frac{9}{2} - \frac{7}{4}\)

\(3x = \frac{{18}}{4} - \frac{7}{4}\)

\(3x = \frac{{11}}{4}\)

\(x = \frac{{11}}{4}:3\)

\(x = \frac{{11}}{4}.\frac{1}{3}\)

\(x = \frac{{11}}{{12}}\)

Vậy \(x = \frac{{11}}{{12}}\).\(\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Hướng dẫn giải:

Ta có: \[B = \frac{{10n - 3}}{{4n - 10}} = \frac{{2,5\left( {4n - 10} \right) + 22}}{{4n - 10}}\]

\[ = \frac{{2,5\left( {4n - 10} \right)}}{{4n - 10}} + \frac{{22}}{{4n - 10}} = 2,5 + \frac{{22}}{{4n - 10}}\]

Vì n là số tự nhiên nên \[B = 2,5 + \frac{{22}}{{4n - 10}}\] đạt giá trị lớn nhất khi \[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất.

\[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.

+) Nếu 4n – 10 = 1 thì 4n = 11 hay \(n = \frac{{11}}{4}\) (loại)

+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)

Khi đó \(B = 2,5 + \frac{{22}}{2} = 13,5\)

Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3.

Lời giải

Hướng dẫn giải:

a) Trong 100 lần gieo xúc xắc thì mặt 6 chấm xuất hiện nhiều nhất và mặt 4 chấm xuất hiện ít nhất.

b) Các mặt có số chẵn chấm của con xúc xắc là mặt 2 chấm, 4 chấm, 6 chấm.

Tổng số lần xuất hiện mặt chấm chẵn là: 18 + 14 + 20 = 52 (lần).

Xác suất của thực nghiệm của các sự kiện gieo được mặt có chấm chẵn là: \(\frac{{52}}{{100}} = 0,52.\)

Vậy xác suất của thực nghiệm của các sự kiện gieo được mặt có chấm chẵn là: 0,52.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay