Câu hỏi:

12/07/2024 12,699

Tìm số tự nhiên n để phân số \(B = \frac{{10n - 3}}{{4n - 10}}\) đạt giá trị lớn nhất. Tìm giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

Hướng dẫn giải:

Ta có: \[B = \frac{{10n - 3}}{{4n - 10}} = \frac{{2,5\left( {4n - 10} \right) + 22}}{{4n - 10}}\]

\[ = \frac{{2,5\left( {4n - 10} \right)}}{{4n - 10}} + \frac{{22}}{{4n - 10}} = 2,5 + \frac{{22}}{{4n - 10}}\]

Vì n là số tự nhiên nên \[B = 2,5 + \frac{{22}}{{4n - 10}}\] đạt giá trị lớn nhất khi \[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất.

\[\frac{{22}}{{4n - 10}}\] đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.

+) Nếu 4n – 10 = 1 thì 4n = 11 hay \(n = \frac{{11}}{4}\) (loại)

+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)

Khi đó \(B = 2,5 + \frac{{22}}{2} = 13,5\)

Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

a) Trong 100 lần gieo xúc xắc thì mặt 6 chấm xuất hiện nhiều nhất và mặt 4 chấm xuất hiện ít nhất.

b) Các mặt có số chẵn chấm của con xúc xắc là mặt 2 chấm, 4 chấm, 6 chấm.

Tổng số lần xuất hiện mặt chấm chẵn là: 18 + 14 + 20 = 52 (lần).

Xác suất của thực nghiệm của các sự kiện gieo được mặt có chấm chẵn là: \(\frac{{52}}{{100}} = 0,52.\)

Vậy xác suất của thực nghiệm của các sự kiện gieo được mặt có chấm chẵn là: 0,52.

Lời giải

Hướng dẫn giải:

Ngày thứ nhất bạn An làm được \(\frac{2}{3}\) tổng số bài.

Ngày thứ hai bạn An làm được \(20\% \) tổng số bài, hay số bài làm được là \(\frac{{20}}{{100}} = \frac{1}{5}\) tổng số bài.

Vậy sau ngày thứ nhất và ngày thứ hai An làm được: \(\frac{2}{3} + \frac{1}{5} = \frac{{13}}{{15}}\) tổng số bài.

Vậy ngày thứ ba còn \(1 - \frac{{13}}{{15}} = \frac{2}{{15}}\) tổng số bài.

Ngày thứ ba bạn An làm nốt \(2\) bài nên ta có số bài làm trong ba ngày là:

\(2:\frac{2}{{15}} = 15\) bài.

Vậy tổng số bài bạn An làm là 15 bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay