Câu hỏi:
29/06/2022 969Cho a, b \[ \in \mathbb{Z}\], b ≠ 0, x = \[\frac{a}{b}\]. Nếu a, b khác dấu thì:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có x = \[\frac{a}{b}\]; a, b \[ \in \mathbb{Z}\], b ≠ 0; a, b khác dấu thì x < 0.
Vì số hữu tỉ \[\frac{a}{b}\] là phép chia số a cho số b mà hai số nguyên a, b khác dấu nên khi chia cho nhau luôn ra số âm suy ra x < 0).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Trong các trường hợp sau, trường hợp nào có các số cùng biểu thị một số hữu tỉ \[ - \frac{1}{2}\]?
về câu hỏi!