Câu hỏi:

13/07/2024 1,263 Lưu

Cho ΔABC vuông tại A. Đường phân giác BD. Vẽ DH BC

(H BC).

a) Chứng minh: ΔABD = ΔHBD.

b) Chứng minh: AD < DC.

c) Trên tia đối AB lấy điểm K sao cho AK = HC. Chứng minh ΔDKC cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

ΔABC vuông tại A, đường phân giác BD; DH BC (H BC);

Trên tia đối AB lấy điểm K sao cho AK = HC.

KL

a) ΔABD = ΔHBD.

b) AD < DC.

c) ΔDKC cân.

Cho ΔABC vuông tại A. Đường phân giác BD. Vẽ DH ⊥ BC  (H ∈ BC). a) Chứng minh: ΔABD = ΔHBD. b) Chứng minh: AD < DC.  (ảnh 1)

a) Xét ΔABD và ΔHBD có:

\(\widehat {BAD} = \widehat {BHD} = {90^o}\)

\(\widehat {ABD} = \widehat {HBD}\) (vì BD là tia phân giác của \(\widehat {ABC}\)).

Cạnh BD chung.

Do đó ΔABD = ΔHBD (cạnh huyền – góc nhọn).

b) Từ câu a: ΔABD = ΔHBD suy ra AD = DH (hai cạnh tương ứng) (1)

ΔDHC vuông tại H nên DH < DC (2) (trong tam giác vuông cạnh đối diện với góc vuông là cạnh lớn nhất).

Từ (1) và (2) suy ra: AD < DC.

c) Xét ΔAKD và ΔHCD có:

\(\widehat {DAK} = \widehat {CHD} = {90^o}\)

AD = DH (cmt)

\[\widehat {ADK} = \widehat {CDH}\] (hai góc đối đỉnh)

Do đó ΔAKD = ΔHCD (c.g.c).

Suy ra KD = DC (hai cạnh tương ứng).

Vậy ΔDKC cân tại D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đơn thức là biểu thức đại số chỉ gồm một số, một biến hoặc một tích giữa các số và các biến.

Do đó, các biểu thức 4x2y ; 6xy.(−x3) ; −4xy2 là các đơn thức

Còn biểu thức 7 + xy2 có chứa phép cộng nên không phải là đơn thức.

Vậy chọn B.

Câu 2

Lời giải

Tam giác ABC có AB < AC < BC. Khẳng định nào sau đây là đúng? (ảnh 1)

Ta có, góc đối diện với cạnh AB là \(\widehat C\); góc đối diện với cạnh AC là \(\widehat B\); góc đối diện với cạnh BC là \(\widehat A\).

Vì AB < AC < BC nên \(\widehat C\) < \(\widehat B\) < \(\widehat A\) (quan hệ giữa góc và cạnh đối diện trong một tam giác).

Chọn đáp án A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP