Câu hỏi:

13/07/2024 8,973

Cho đường tròn (O; R) và dây AB cố định không đi qua tâm. Trên tia đối của tia AB lấy điểm C (C khác A). Từ C kẻ 2 tiếp tuyến CM và CN với đường tròn (O) (M và N là các tiếp điểm; tia CO nằm giữa hai tia CM và CA). Gọi D là trung điểm AB.

a) Chứng minh tứ giác CMOD nội tiếp.

b) Chứng minh: CN2 = CA.CB

c) ND cắt (O) tại I. Chứng minh: MI // ABư

d) Gọi E là giao điểm của MN và AB. Chứng minh 2CE=1CA+1CB.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho đường tròn (O; R) và dây AB cố định không đi qua tâm. Trên tia đối của tia AB lấy điểm C (C khác A). Từ C kẻ 2 tiếp tuyến CM và CN với đường tròn (O) (M và N là các tiếp điểm; tia CO nằm giữa hai tia CM và CA). Gọi D là trung điểm AB. a) Chứng minh tứ giác CMOD nội tiếp. b) Chứng minh: CN2 = CA.CB c) ND cắt (O) tại I. Chứng minh: MI // AB (ảnh 1)

a) Ta có D là trung điểm của AB nên OD AB (đường kính đi qua trung điểm của dây thì vuông góc với dây).

Ta có: ODC^= 90° (OD AB)

OMC^= 90° (MC là tiếp tuyến của (O))

Xét tứ giác ABOC có ODC^+OMC^= 90° + 90° = 180°

Suy ra tứ giác CMOD nội tiếp.

b) Xét ∆CAN và ∆CNB có:

NCB^ là góc chung

NBA^=ANC^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung AN).

Suy ra ∆CAN đồng dạng ∆CNB (g.g)

Từ đó suy ra CACN=CNCBCN2=CA.CB (điều phải chứng minh)

c) Ta có: 

NIM^=NMC^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung NM)

NDC^=NMC^(tứ giác CMOD nội tiếp)

Suy ra NIM^=NDC^ suy ra BC // IM.

d) Gọi H là giao điểm của MN và OC.

Ta có OM = ON = R.

CN = CM (tính chất hai tiếp tuyến cắt nhau).

Suy ra OC là trung trực của MN suy ra OC MN.

Xét ∆CEH và ∆COD có:

DCO^ là góc chung

EHC^=ODC^= 90° (OD AB và MN OC)

Suy ra ∆CEH đồng dạng ∆COD (g.g)

Từ đó suy ra CECO=CHCDCE.CD=CH.CO (1)

Xét tam giác ONC vuông tại N đường cao NH ta có:

NC2 = OH.OC

Mà NC2 = CA.CB (chứng minh trên)

Suy ra OH.OC = CA.CB (2)

Từ (1) và (2) ta được

CE.CD = CA.CB

Mà CB + CA = 2CA + AB = 2CA + 2DA

= 2(CA + DA) = 2CD

CD=12(CA+CB)

Thay vào trên ta được

2CE=CA+CBCA.CB

 

2CE=1CA+1CB (điều phải chứng minh)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Giải hệ phương trình sau: {32x7+4y+6=722x73y+6=1

2) Cho Parabol (P): y = x2 và đường thẳng (d): y = (m + 4)x – 4m

a) Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt.

b) Tìm tọa độ giao điểm của (d) và (P) khi m = −2.

 

Xem đáp án » 13/07/2024 4,257

Câu 2:

Quãng đường AB dài 400 km, một ô tô đi từ A đến B với vận tốc không đổi. Khi từ B trở về A, ô tô tăng vận tốc thêm 10 km/h. Biết thời gian ô tô đi từ B vể A ít hơn thời gian đi từ A đến B là 2 giờ. Tính vận tốc ô tô lúc đi từ A đến B.

Xem đáp án » 13/07/2024 3,324

Câu 3:

Cho các biểu thức:

A=x+1x+3B=xx2x+2xx2 với x ≥ 0, x ≠ 4

a) Tính giá trị của biểu thức A khi x = 49.

b) Rút gọn biểu thức B.              

c) Tìm x để biểu thức P = A.B ≤ 1x+3

Xem đáp án » 12/07/2024 1,236

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store