Câu hỏi:

13/07/2024 20,001 Lưu

Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước: Việt Nam, Ấn Độ, Ai Cập, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế đó. Tìm số phần tử của tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Học sinh được chọn ra đến từ châu Á”;

b) “Học sinh được chọn ra đến từ châu Âu”;

c) “Học sinh được chọn ra đến từ châu Mỹ”;

d) “Học sinh được chọn ra đến từ châu Phi”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập hợp các kết quả có thể xảy ra đối với học sinh được chọn ra là:

G = {Việt Nam; Ấn Độ; Ai Cập; Brasil; Canada; Tây Ban Nha; Đức; Pháp; Nam Phi}.

Số phần tử của tập hợp G bằng 9.

a) Trong 9 đất nước trên có các đất nước thuộc châu Á là: Việt Nam và Ấn Độ.

Do đó có 2 kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Á” là: Việt Nam; Ấn Độ.

Khi đó xác suất của biến cố “Học sinh được chọn ra đến từ châu Á” bằng 29.

b) Trong 9 đất nước trên có các đất nước thuộc châu Âu là: Tây Ban Nha, Đức, Pháp.

Do đó có 3 kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Âu” là: Tây Ban Nha, Đức, Pháp.

Khi đó xác suất của biến cố “Học sinh được chọn ra đến từ châu Âu” bằng 39=13.

c) Trong 9 đất nước trên có các đất nước thuộc châu Mỹ là: Brasil, Canada.

Do đó có 2 kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Mỹ” là: Brasil, Canada.

Khi đó xác suất của biến cố “Học sinh được chọn ra đến từ châu Mỹ” bằng 29.

d) Trong 9 đất nước trên có các đất nước thuộc châu Phi là: Ai Cập, Nam Phi.

Do đó có 2 kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Phi” là: Ai Cập, Nam Phi.

Khi đó xác suất của biến cố “Học sinh được chọn ra đến từ châu Phi” bằng 29.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gieo ngẫu nhiên xúc xắc một lần nên tập hợp các kết quả có thể xảy ra đối với số chấm xuất hiện trên mặt xúc xắc là: A = {1 chấm; 2 chấm; 3 chấm; 4 chấm; 5 chấm; 6 chấm}.

Số phần tử của tập hợp A là 6.

a) Từ 1 đến 6 có các số nguyên tố là 2; 3; 5.

Do đó có 3 kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”.

Khi đó xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” bằng 36=12.

b) Từ 1 đến 6 có các số chia 4 dư 1 là: 1; 5.

Do đó có 2 kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1”.

Khi đó xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” bằng 26=13.

Lời giải

a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: B = {1; 2; 3; ...; 12}.

Số phần tử của tập hợp B là 12.

b) Từ 1 đến 12 có các số chia hết cho 3 là: 3; 6; 9; 12.

Do đó có 4 kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3”.

c) Tỉ số của số các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và số phần tử của tập hợp B bằng 412=13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP