Câu hỏi:

10/05/2021 1,951

Có bao nhiêu số nguyên a thuộc (-2019;2019) để phương trình 1lnx+5+13x-1=x+a có hai nghiệm phân biệt

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập hợp các số thực m để phương trình log2x=m có nghiệm thực là

Xem đáp án » 08/05/2021 32,208

Câu 2:

Cho hai số thực m, n dương thỏa mãn log4m2=log6n=log9(m+n). Tính giá trị của P=mn

Xem đáp án » 22/04/2021 14,489

Câu 3:

Cho hai số dương x, y thỏa mãn log2(4x+y+2xy+2)y+2=8-2x-2y+2. Giá trị nhỏ nhất của P=2x+y là số có dạng M=ab+c với a,b, a>2. Tính S=a+b+c

Xem đáp án » 14/01/2020 12,092

Câu 4:

Cho phương trình 2x-12.log2x2-2x+3=4x-mlog22x-m+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn -2019;2019 để phương trình có đúng 2 nghiệm phân biệt.

Xem đáp án » 14/01/2020 9,301

Câu 5:

Phương trình log32x-1x-12=3x2-8x+5 có hai nghiệm là a và ab (với a,b * và ab là phân số tối giản). Giá trị của b là

Xem đáp án » 14/01/2020 8,636

Câu 6:

Cho phương trình m.ln2(x+1)-(x+2-m)ln(x+1)-x-2=0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0<x1<2<4<x2 là khoảng a;+  . Khi đó a thuộc khoảng

Xem đáp án » 08/05/2021 8,129

Câu 7:

Tìm số giá trị nguyên của m thuộc [-20;20] để phương trình log2x2+m+xx2+4=2m-9x-1+1-2mx2+4 có nghiệm

Xem đáp án » 14/01/2020 7,867

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store