Câu hỏi:
06/07/2022 3,572Quảng cáo
Trả lời:
Đáp án đúng là: B
Nếu A và B là tập hợp hữu hạn thì n(A ∪ B) = n(A) + n(B) – n(A ∩ B).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi A là tập hợp các học sinh của lớp 10A chơi bóng đá và B là tập hợp các học sinh của lớp 10A chơi cầu lông.
Số phần tử của A và B lần lượt là n(A) và n(B) nên n(A) = 22; n(B) = 25.
Ta có:
+) Tập hợp số học sinh chơi cả hai môn thể thao bóng đá và cầu lông là A ∩ B nên n(A ∩ B) =15.
+) Tập hợp số học sinh chơi ít nhất 1 trong 2 môn thể thao đó là A ∪ B.
Nên tổng số học sinh chơi ít nhất 1 trong 2 môn thể thao là n(A ∪ B).
Suy ra n(A ∪ B) = n(A) + n(B) ‒ n(A ∩ B) = 22 + 25 – 15 = 32.
Vậy có 32 học sinh chơi ít nhất một trong hai môn thể thao bóng đá và cầu lông.
Lời giải
Đáp án đúng là: C
Gọi A là tập hợp số học sinh thích môn Vật lí.
B là tập hợp số học sinh thích môn Hóa học.
Số phần tử của A và B lần lượt là n(A) và n(B) thì n (A) = 30, n(B) = 15.
Ta có:
+) Tập hợp số học sinh thích cả hai môn Vật lí và Hoá học là: A ∩ B nên n(A ∩ B) = 10.
+) Tập hợp số học sinh thích ít nhất 1 trong 2 môn Vật lí và môn Hóa học là A ∪ B.
Nên số học sinh thích ít nhất một trong hai môn đó là n(A ∪ B).
Suy ra n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 30 + 15 – 10 = 35.
Vậy số học sinh chỉ thích môn Vật lí hoặc chỉ thích môn Hóa học là:
n(A ∪ B) - n(A ∩ B) = 35 – 10 = 25.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.