Câu hỏi:

06/07/2022 472

Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình:

4(2 – y) > 2x + y – 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có:

4(2 – y) > 2x + y – 2

8 – 4y > 2x + y – 2

–2x – 4y – y > –2 – 8

–2x – 5y > –10

2x + 5y < 10.

+ Đối với cặp số (x; y) = (0; 0) ta có: 2.0 + 5.0 = 0 < 10

Do đó cặp số (x; y) = (0; 0) là nghiệm của bất phương trình 2x + 5y < 10, tức là nghiệm của bất phương trình 4(2 – y) > 2x + y – 2. .

+ Đối với cặp số (x; y) = (1; 0) ta có: 2.1 + 5.0 = 2 < 10

Do đó cặp số (x; y) = (1; 0) là nghiệm của bất phương trình 2x + 5y < 10, tức là nghiệm của bất phương trình 4(2 – y) > 2x + y – 2.

+ Đối với cặp số (x; y) = (1; 2) ta có: 2.1 + 5.2 = 12 > 10

Do đó cặp số (x; y) = (1; 2) không phải là nghiệm của bất phương trình 2x + 5y < 10, tức không là nghiệm của bất phương trình 4(2 – y) > 2x + y – 2.

+ Đối với cặp số (x; y) = (–1; 1) ta có :  2.( –1) + 5.1 = 3 < 10

Do đó cặp số (x; y) = (–1; 1) là nghiệm của bất phương trình 2x + 5y < 10, tức là nghiệm của bất phương trình 4(2 – y) > 2x + y – 2.

Vậy cặp số (x; y) = (1; 2) không phải là nghiệm của bất phương trình 4(2 – y) > 2x + y – 2.

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có:

2(x + 3) – 4(y –1) < 0

2x + 6 – 4y + 4 < 0

2x – 4y + 10 < 0

2x – 4y < –10.

+ Đối với cặp số (x; y) = (0; 0) ta có: 2.0 – 4.0 = 0 > –10.

Do đó cặp số (x; y) = (0; 0) không phải là nghiệm của bất phương trình 2x – 4y < –10.

Suy ra điểm (0 ; 0) không thuộc miền nghiệm của bất phương trình: 2(x + 3) – 4(y –1) < 0.

+ Đối với cặp số (x; y) = (1; 0) ta có: 2.1 – 4.0 = 2 > –10.

Do đó cặp số (x; y) = (1; 0) không phải là nghiệm của bất phương trình 2x – 4y < –10.

Suy ra điểm (1 ; 0) không thuộc miền nghiệm của bất phương trình: 2(x + 3) – 4(y –1) < 0.

+ Đối với cặp số (x; y) = (0; 1) ta có: 2.0 – 4.1 = – 4 > –10.

Do đó cặp số (x; y) = (0; 1) không phải là nghiệm của bất phương trình 2x – 4y < –10.

Suy ra điểm (0 ; 1) không thuộc miền nghiệm của bất phương trình: 2(x + 3) – 4(y –1) < 0.

+ Đối với cặp số (x; y) = (– 5; 1) ta có : 2.(– 5) – 4. 1  = – 14 < –10.

Do đó cặp số (x; y) = (– 5; 1) là nghiệm của bất phương trình 2x – 4y < –10.

Suy ra điểm (– 5; 1) thuộc miền nghiệm của bất phương trình: 2(x + 3) – 4(y –1) < 0.

Vậy điểm (– 5; 1) thuộc miền nghiệm của bất phương trình: 2(x + 3) – 4(y –1) < 0.

Vậy ta chọn đáp án D.

Câu 2

Miền nghiệm của bất phương trình: –3x + y > 0 chứa điểm nào trong các điểm sau:

Lời giải

Đáp án đúng là: A

+ Đối với cặp số (x; y) = (–3; 0) ta có : –3.(–3) + 0 = 9 > 0.

Suy ra cặp số (x; y) = (–3; 0) là một nghiệm của bất phương trình –3x + y > 0.

Do đó miền nghiệm của bất phương trình –3x + y > 0 chứa điểm (–3; 0).

+ Đối với cặp số (x; y) = (3; 2) ta có : –3. 3 + 2 = –7 < 0.

Suy ra cặp số (x; y) = (3; 2) không phải là nghiệm của bất phương trình –3x + y > 0.

Do đó miền nghiệm của bất phương trình –3x + y > 0 không chứa điểm (3; 2).

+ Đối với cặp số (x; y) = (0; 0) ta có : –3. 0 + 0 = 0.

Suy ra cặp số (x; y) = (0; 0) không phải là nghiệm của bất phương trình –3x + y > 0.

Do đó miền nghiệm của bất phương trình –3x + y > 0 không chứa điểm (0; 0).

+ Đối với cặp số (x; y) = (1; 1) ta có : –3. 1 + 1 = –2 < 0.

Suy ra cặp số (x; y) = (1; 1) không phải là nghiệm của bất phương trình –3x + y > 0.

Do đó miền nghiệm của bất phương trình –3x + y > 0 không chứa điểm (1; 1).

Vậy miền nghiệm của bất phương trình –3x + y > 0 chứa điểm (–3; 0).

Vậy ta chọn phương án A.

Câu 3

Cặp số (2 ; 3) là nghiệm của bất phương trình nào sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho bất phương trình x + y ≤ 2 (1). Chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Bất phương trình nào tương đương với bất phương trình 3x – y > 7(x – 4y) + 1?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay