Câu hỏi:

06/07/2022 487

Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{ - 2x + y \ge 2}\\{y - x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A \(\left\{ {\begin{array}{*{20}{c}}{ - 2x + y \ge 2}\\{y - x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\)

Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:

Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi  (ảnh 1)

Khi đó miền tam giác EGH (bao gồm cả biên) là miền nghiệm của hệ bất phương trình đã cho.

Các đỉnh E, H, G có tọa độ: E(–1; 3); H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)); G(2; 6).

Ta tính giá trị của F = –x + y  tại các đỉnh của tam giác EGH.

Tại E(–1; 3) ta có F = (–1) + 3 = 4;

Tại H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)) ta có F = \(\frac{1}{5}\)+\(\frac{{12}}{5}\)= \(\frac{{11}}{5}\);

Tại G(2; 6) ta có F = –2 + 6 = 4.

Suy ra F nhỏ nhất bằng \(\frac{{11}}{5}\) tại H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)), tức là Fmin = \(\frac{{11}}{5}\).

Ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn ?

Lời giải

Đáp án đúng là: A

Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.

Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.

Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là: C

+ Ta có : –3. (–1)  + 2 = 5 > 2 và 1 + 2.2 = 3 > 1.

Do đó cặp số (–1 ; 2) không là nghiệm của bất phương trình x + 2y ≤ 1.

Vậy nên cặp số (–1 ; 2) không là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm M(–1 ; 2) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

+ Ta có : –3. 0 + (–1)= –1 > 2 và 0 + 2. (–1) = –2 < 1.

Do đó cặp số (0; –1) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.

Vậy nên cặp số (0; –1) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm M(0; –1)  thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

+ Ta có : –3. + 0 = 0 > 2 và 0 + 2.0 = 0 < 1.

Do đó cặp số (0 ; 0) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.

Vậy nên cặp số (0 ; 0) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm O(0 ; 0) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Vậy hai điểm M(0; –1)  và O(0 ; 0) thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Do đó ta chọn đáp án C.

Câu 3

Tìm khẳng định sai trong các khẳng định sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Một người nông dân dự định quy hoạch x sào đất trồng rau cải và y sào đất trồng cà chua. Biết rằng người nông dân chỉ có tối đa 900 nghìn đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng rau cải là 100 nghìn đồng, mỗi sào đất trồng cà chua là 50 nghìn đồng. Trong các hệ bất phương trình sau, hệ nào mô tả các ràng buộc đối với x, y ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay