Câu hỏi:

07/07/2022 2,783 Lưu

Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:y

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

\(A = \frac{{{{\left( {1 - \frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}} \right)}^2}}}{{4.\frac{{{{\sin }^2}\alpha }}{{co{s^2}\alpha }}}} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)

\( \Leftrightarrow A = \frac{{{{(co{s^2}\alpha - {{\sin }^2}\alpha )}^2}}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)

\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + 1)(co{s^2}\alpha - {{\sin }^2}\alpha - 1)}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)

\( \Leftrightarrow A = \frac{{(co{s^2}\alpha - {{\sin }^2}\alpha + co{s^2}\alpha + {{\sin }^2}\alpha )(co{s^2}\alpha - {{\sin }^2}\alpha - co{s^2}\alpha - {{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\)

\( \Leftrightarrow A = \frac{{2co{s^2}\alpha ( - 2{{\sin }^2}\alpha )}}{{4{{\sin }^2}\alpha .co{s^2}\alpha }} = - 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Áp dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{cos\alpha }}\) (cos α ≠ 0), ta có:

\[A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }} = \frac{{3\tan \alpha .cos\alpha + cos\alpha }}{{\tan \alpha .cos\alpha - cos\alpha }} = \frac{{3\tan \alpha + 1}}{{\tan \alpha - 1}} = \frac{{3.2 + 1}}{{3.2 - 1}} = 7\].

Câu 2

Lời giải

Đáp án đúng là: C

Đối với 2 góc bù nhau α và 180° – α ta có

sin(180° – α) = sin α; cos(180° – α) = – cos α;

tan(180° – α) = – tan α (α ≠ 90°); cot(180° – α) = – cot α (0 < α < 180°);

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP