Câu hỏi:

08/07/2022 379

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Xác suất chọn được số lớn hơn 2500 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Số có 4 chữ số có dạng: \(\overline {abcd} \) (a ≠ 0)

Công đoạn 1, Chọn số a có 9 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 9 số từ 1 đến 9).

Công đoạn 2, chọn số b có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).

Công đoạn 3, chọn số c có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Công đoạn 4, chọn số d có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Số phần tử của không gian mẫu: n(S) = 9.9.8.7 = 4536.

Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500” ta có các trường hợp sau:

Trường hợp 1, a > 2

Chọn a: có 7 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 7 số từ 3 đến 9).

Chọn b: có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).

Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 7.9.8.7 = 3528 (số).

Trường hợp 2, a = 2 và b > 5.

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 4 cách chọn (vì b có thể chọn 1 trong 4 số từ 6 đến 9).

Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.4.8.7 = 224 (số).

Trường hợp 3, a = 2, b = 5 và c > 0

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 1 cách chọn (vì b = 5).

Chọn c: có 7 cách chọn (vì c ≠ a, c ≠ b mà c > 0 nên c có thể chọn một trong các số từ 1 đến 9 có 9 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 7 số để chọn).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.1.7.7 = 49 (số).

Trường hợp 4, a = 2; b = 5; c = 0; d > 0

Chọn a: có 1 cách chọn (vì a = 2).

Chọn b: có 1 cách chọn (vì b = 5).

Chọn c: có 1 cách chọn (vì c = 0).

Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).

Vậy trường hợp này có: 1.1.1.7 = 7 (số).

Như vậy số phần tử của biến cố A là n(A) = 3528 + 224 + 49 + 7 = 3808.

Suy ra xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( S \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\).

Em nghĩ bài toán này nếu giải theo kiểu phần bù thì sẽ ngắn hơn nhiều ạ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Gieo một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm của hai lần gieo nhỏ hơn 6.

Lời giải

Đáp án đúng là: C

Số phần tử của không gian mẫu n(Ω) = 6.6 = 36 (vì mỗi lần gieo có 6 khả năng có thể sảy ra)

Gọi A là biến cố tổng số chấm của hai lần gieo nhỏ hơn 6. Ta liệt kê các phần tử của biến cố A như sau: A = {(1; 1); (1; 2); (1; 3); (1; 4); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (4; 1)}.

Vậy số phần tử của biến cố A là: n(A) = 10

Xác suất của biến cố A là: P(A) = \(\frac{{10}}{{36}} = \frac{5}{{18}}\).

Lời giải

Đáp án đúng là: D

Gieo một con xúc xắc cân đối đồng chất 2 lần nên ta có

Lần 1 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).

Lần 2 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).

Vậy số phần tử của không gian mẫu n(Ω) = 6.6 = 36.

Câu 3

Gieo một con súc sắc cân đối đồng chất 1 lần. Gọi A là biến cố “mặt có chấm lẻ xuất hiện”. Biến cố đối của biến cố A là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay