Câu hỏi:
08/07/2022 798Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Số phần tử không gian mẫu là: n(Ω) = 3! = 6 (vì xếp 3 lá thư vào 3 phòng bì)
Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:\(\)
Trường hợp 1, nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.
Trường hợp 2, nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách
Trường hợp 3, nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.
Trường hợp 4, cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.
Vậy số phần tử của biến cố A là n(A) = 4.
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)\( = \frac{4}{6}\)\( = \frac{2}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm của hai lần gieo nhỏ hơn 6.
Câu 2:
Gieo một con súc sắc cân đối đồng chất 1 lần. Gọi A là biến cố “mặt có chấm lẻ xuất hiện”. Biến cố đối của biến cố A là
Câu 3:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
Câu 4:
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Câu 5:
Từ các số tự nhiên 1, 2, 3, 4, 5, 6, 7, 8, 9 lấy ngẫu nhiên một số. Tính xác suất để lấy được số chia hết chia hết cho 3?
Câu 6:
Gieo một đồng xu cân đối và đồng chất ba lần. Tính xác suất của biến cố A: “Kết quả của 3 lần gieo là như nhau”
Câu 7:
Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
về câu hỏi!