Câu hỏi:

08/07/2022 1,666

Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Số phần tử của không gian mẫu là: n(Ω) = 6.6 = 36

Để phương trình x2 + bx + c = 0 vô nghiệm thì: ∆ = b2 – 4ac < 0.

Gọi A là biến cố của phép thử để kết quả (b; c) trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai thỏa mãn b2 – 4ac < 0 ta có các trường hợp sau:

Trường hợp 1, b = 1 vậy c = {1; 2; 3; 4; 5; 6} có 6 cách

Trường hợp 2, b = 2 vậy c = {2; 3; 4; 5; 6} có 5 cách

Trường hợp 3, b = 3 vậy c = {3; 4; 5; 6} có 4 cách

Trường hợp 4, b = 4 vậy c = {5; 6} có 2 cách

Số phần tử của biến cố A là: n(A) = 6 + 5 + 4 + 2 = 17

Vậy xác suất của biến cố A là: \[P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{17}}{{36}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Số phần tử của không gian mẫu là: n(Ω) = \(C_{10}^2\) = 45.

Gọi A là biến cố: “Hai bi lấy ra có tích hai số trên chúng là một số lẻ”. Để tích của hai số là lẻ khi cả hai số được chọn phải là số lẻ nên số phần tử của biến cố A là n(A) = \(C_5^2\) = 10.

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{10}}{{45}} = \frac{2}{9}\).

Lời giải

Đáp án đúng là: D

Số phần tử của không gian mẫu là: n(Ω) = 2!.\(C_{12}^6.C_6^6\) = 1848 (vì bốc lúc đầu bốc 6 đội từ 12 đội vào bảng A sau đó bốc 6 đội từ 6 đội còn lại vào bảng B; ta hoán vị 2 bảng).

Gọi A là biến cố: “ 2 đội của hai lớp 12A2 và 11A6 ở cùng một bảng”.

Số phần tử của biến cố A là: n(A) = 2!.\(C_{10}^4C_6^6\) = 420 ( vì bốc 4 đội từ 10 đội ( không tính hai lớp 12A2 và 11A6) vào bảng đã xếp hai đội của hai lớp 12A2 và 11A6 sau đó bốc 6 đội còn lại vào một bảng; ta hoán vị hai bảng).

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{420}}{{1848}} = \frac{5}{{22}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP