Câu hỏi:

18/07/2022 31,958

Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu min0;2fx=f1  thì max0;2fx  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

f '(x) = 4mx3 + 4(m - 1)x

Do f (x) là hàm đa thức và min0;2fx=f1f'1=0

4m+4m1=0m=12

Thay m=12  vào hàm số ban đầu ta được

y=12x4+2121x2=12x4x2

Þ y' = 2x3 - 2x = 2x(x - 1)(x + 1)

Ta có BBT:

Media VietJack

Vậy với m=12  , thì min0;2fx=f1TM .

Dựa vào BBT ta có max0;2fx=f2=4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có:AB2;2;2;AC1;0;1.

AB;AC=2;4;2=21;2;1

Vì đường thẳng cần tìm vuông góc với mặt phẳng (ABC) nên đường thẳng cần tìm có véctơ chỉ phương là  và đi qua A(1; 2; -1). Suy ra phương trình đường thẳng cần tìm là: x11=y22=z+11.

Câu 2

Lời giải

Đáp án đúng là: B

Từ BBT ta nhận thấy hàm số có hai điểm cực trị và đồng biến trên khoảng (1; +¥). Do đó hàm số là hàm đa thức bậc ba có hệ số a > 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP