Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Lấy điểm M trên nửa đường tròn đơn vị sao cho \(\widehat {xOM} = 120^\circ \).

Media VietJackTa có: \(\widehat {MOy} = 120^\circ - 90^\circ = 30^\circ \).

Ta tính được tọa độ điểm M: \(\left\{ \begin{array}{l}{x_0} = - \left( {OM.\sin 30^\circ } \right) = - \left( {1.\frac{1}{2}} \right) = - \frac{1}{2}\\{y_0} = OM.\cos 30^\circ = 1.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\end{array} \right.\).

Hay \(M\left( { - \frac{1}{2};\,\,\frac{{\sqrt 3 }}{2}} \right)\).

Vậy theo định nghĩa ta có:

\(\sin 120^\circ = \frac{{\sqrt 3 }}{2};\,\cos 120^\circ = - \frac{1}{2}\); \(\tan 120^\circ = - \sqrt 3 ;\,\cot 120^\circ = - \frac{{\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có sin135° = sin(180° – 45°) = sin45° = \(\frac{{\sqrt 2 }}{2}\);

cos135° = cos(180° – 45°) = – cos45° = \( - \frac{{\sqrt 2 }}{2}\);

\(\tan 135^\circ = \frac{{\sin 135^\circ }}{{\cos 135^\circ }} = \frac{{\frac{{\sqrt 2 }}{2}}}{{ - \frac{{\sqrt 2 }}{2}}} = - 1\).

Do đó cot135° = \(\frac{{cos135^\circ }}{{\sin 135^\circ }} = \frac{{ - \frac{{\sqrt 2 }}{2}}}{{\frac{{\sqrt 2 }}{2}}} = - 1\).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Ta có sin60° = \(\frac{{\sqrt 3 }}{2}\); cos60° = \(\frac{1}{2}\); tan60° =\(\sqrt 3 \); cot60° =\(\frac{1}{{\sqrt 3 }}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP