A = 16. 58 + 32 chia hết cho những số nào trong các số 2; 4; 8; 13; 16?
A = 16. 58 + 32 chia hết cho những số nào trong các số 2; 4; 8; 13; 16?
A. A chia hết cho 2, cho 4, cho 8, cho 16;
B. A chia hết cho 2, cho 4, cho 13;
C. A chia hết cho 2, cho 8, cho 13, cho 16;
D. A chia hết cho 2, cho 6, cho 8.
Quảng cáo
Trả lời:

Đáp án đúng là: A
Ta thấy 16 chia hết cho 2, cho 4, cho 8, cho 16 nên 16. 58 chia hết cho 2, cho 4, cho 8, cho 16
Lại có 32 chia hết cho 2, cho 4, cho 8, cho 16
Suy ra A = 16. 58 + 32 chia hết cho 2, cho 4, cho 8, cho 16.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. A chia hết cho 6, cho 8;
B. A chia hết cho 6, cho 20;
C. A không chia hết cho 6, A chia hết cho 8, cho 20;
D. A không chia hết cho 8, A chia hết cho 6 và 20.
Lời giải
Đáp án đúng là: C
Ta có :
6\[ \vdots \]6 nên 2.4.6.8.10.12\[ \vdots \]6
8\[ \vdots \]8 nên 2.4.6.8.10.12\[ \vdots \]8
20\[ \vdots \]20 nên 2.4.6.8.10.12\[ \vdots \]20
Do đó, 2.4.6.8.10.12 chia hết cho 6, 8 và 20
Ta có 40 chia hết cho 8 và 20
Suy ra A chia hết cho 8 và 20
Vì 40 không chia hết cho 6 nên A = 2.4.6.8.10.12\[ - \]40 không chia hết cho 6
Vậy A không chia hết cho 6, A chia hết cho 8 và 20.
Câu 2
B. Chia hết cho 4;
C. Chia cho 4 dư 3;
D. Không xác định.
Lời giải
Đáp án đúng là: B
Gọi q là thương của phép chia (q < 4)
Vì a chia 8 dư 4 nên a = 8q + 4
a = 8q + 4 = 4. (2q + 1)
Ta có 4\[ \vdots \]4 nên 4. (2q + 1)\[ \vdots \]4
Vậy số tự nhiên a chia hết cho 4.
Câu 3
A. Đúng;
B. Sai;
C. Chưa đủ điều kiện để xác định;
D. Cả 3 đáp án đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Sai;
B. Đúng;
C. A chia 100 dư 15;
D. Không xác định.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.