Câu hỏi:

24/08/2022 6,429

Một người thợ sử dụng thước ngắm có góc vuông để đo gián tiếp chiều cao của một cái cây. Với các kích thước đo được như hình bên: Khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ là 2,25 m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người ngắm là 1,5 m. Hỏi với các kích thước trên thì người thợ đo được chiều cao của cây đó là bao nhiêu?

Một người thợ sử dụng thước ngắm có góc vuông để đo gián tiếp chiều cao của một cái cây. Với các kích thước đo được như hình bên: (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có:

+) AEDB là hình chữ nhật nên suy ra AB = DE = 1,5 m và BD = AE = 2,25 m

+) Áp dụng định lý Pytago vào tam giác AED vuông tại E có

AD=AE2+DE2=2,252+1,52=3134m

+) Xét hai tam giác ABD và ADC có:

BAD^=DAC^A^chungABD^=ADC^=90°    ΔABDΔADCg.g

ABAD=ADAC

AC=AD2AB=313421,5=4,875m

Vậy chiều cao của của cây đó là 4,875 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi x (con) là số gà (x Î ℕ*)

Khi đó số chân gà là 2x (chân)

Tổng số con gà và bò là 1 200 con nên số con bò là 1200 − x (con)

Số chân bò là 4(1 200 – x) (chân)

Vì tổng số chân gà và chân bò là 2 700 chân nên ta có phương trình

2x + 4(1200 − x) = 2700

Û 2x + 4800 ‒ 4x = 2700

Û ‒2x = 2700 ‒ 4800

Û ‒2x = −2100

Û x = 1 050 (thỏa mãn)

Vậy số gà là 1 050 con và số bò là 1 200 ‒ 1050 = 150 (con).

Lời giải

c) Áp dụng tính chất đường phân giác vào tam giác ACH có AK là đường phân giác

ACHA=CKHK (4)

Từ (3) và (4) suy ra AIHI=CKHK

Tam giác HAC có AIHI=CKHK  , áp dụng định lý Ta-lét đảo ta suy ra được:

IK // AC (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay