Câu hỏi:

13/07/2024 12,129

c) Chứng minh: BH.BD + CH.CF = BC2 và HEAE+HDBD+HFCF=1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) +) Xét hai tam giác DBEH và DBDC có:

EBH^=DBC^B^chungBEH^=BDC^=90°     ΔBEHΔBDCg.g

BEBD=BHBCBH.BD=BE.BC (1)

+) Xét hai tam giác DCEH và DCFB có:

ECH^=FCB^C^chungCEH^=CFB^=90°     ΔCEHΔCFBg.g

CECF=CHCBCH.CF=CE.CB (2)

Từ (1) và (2) ta có:

BH.BD + CH.CF = BE.BC + CE.BC

= BC(BE + CE) = BC.BC = BC2 (đpcm)

+) Ta có:

HEAE+HDBD+HFCF

 =12.HE.BC12AE.BC+12.HD.AC12.BD.AC+12.HF.AB12.CF.AB

=SHBCSABC+SHACSBAC+SHABSCAB

=SHBC+SHAC+SHABSABC=SABCSABC=1 (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho ABC có ba góc nhọn (AB < AC) có ba đường cao AE, BD, CF cắt nhau tại H. a) Chứng minh: tam giác ABD đồng dạng với tam giác ACF. (ảnh 1)

H là giao của 3 đường cao AE, BD, CF nên H là trực tâm của tam giác ABC

a) Xét hai tam giác DABD và DACF có:

BAD^=CAF^A^chungADB^=AFC^=90°    ΔABDΔACFg.g

Lời giải

Hướng dẫn giải

Gọi x (m) chiều rộng ban đầu của khu vườn (x > 5)

Chiều dài của khu vườn lớn hơn chiều rộng 4 m nên chiều dài mảnh vườn là x + 4 (m)

Vậy diện tích ban đầu của khu vườn là x(x + 4) (m2)

Nếu tăng chiều dài thêm 7 m và giảm chiều rộng 5 m thì chiều dài của hình chữ nhật là x + 11 (m) và chiều rộng là x - 5 (m)

Khi đó, diện tích của khu vườn là (x + 11)(x - 5) (m2)

Mà sau khi thay đổi chiều dài và chiều rộng, diện tích khu vườn giảm 29 m2 nên ta có phương trình

x(x + 4) - (x + 11)(x - 5) = 29

Û x2 + 4x - x2 - 11x + 5x + 55 = 29

Û 2x = 55 - 29 = 26

Û x = 13 (TMĐK)

Khi đó khu vườn có chiều rộng ban đầu là 13 m.

Chiều dài ban đầu khu vườn hình chữ nhật :

13 + 4 = 17 (m).

Vậy ban đầu khu vườn hình chữ nhật có chiều dài là 13 m, chiều rộng là 17 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay