Câu hỏi:
25/08/2022 667Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
+ Thay cặp số (6 ; 3) vào vế trái của bất phương trình ta được :
6 + 3 . 3 − 7 = 6 + 9 − 7 = 8 ≤ 8
Vậy cặp số (6 ; 3) là nghiệm của bất phương trình trên.
+ Thay cặp số (4 ; 4) vào vế trái của bất phương trình ta được :
4 + 3 . 4 − 7 = 4 + 12 − 7 = 9 > 8
Vậy cặp số (4 ; 4) không là nghiệm của bất phương trình trên.
+ Thay cặp số (10 ; 3) vào vế trái của bất phương trình ta được :
10 + 3 . 3 − 7 = 10 + 9 − 7 = 12 > 8
Vậy cặp số (10 ; 3) không là nghiệm của bất phương trình trên.
+ Thay cặp số (2 ; 6) vào vế trái của bất phương trình ta được :
2 + 3 . 6 − 7 = 2 + 18 − 7 = 13 > 8
Vậy cặp số (2 ; 6) không là nghiệm của bất phương trình trên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của bất phương trình ax + by < c được gọi là miền nghiệm của bất phương trình đó”.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Cho bất phương trình bậc nhất hai ẩn ax + by < c. Mỗi cặp số (x0 ; y0) sao cho ax0 + by0 < c được gọi là nghiệm của bất phương trình đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.