Câu hỏi:

03/09/2022 2,136

Có bao nhiêu số tự nhiên gồm 4 chữ số, các chữ số đều nhỏ hơn 5 và đôi một khác nhau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Các chữ số đều nhỏ hơn 5 nên ta chỉ được chọn từ các số 0; 1; 2; 3; 4

Gọi số tự nhiên cần tìm có dạng \(\overline {abcd} \).

Chọn số a có 4 cách (vì a chọn tuỳ ý một trong các số 1; 2; 3; 4)

Chọn số b có 4 cách (vì các chữ số đôi một khác nhau nên b ≠ a, vậy b không chọn lại số a đã chọn nên b có 4 cách chọn)

Chọn số c có 3 cách (vì các chữ số đôi một khác nhau nên c ≠ a, c ≠ b vậy c không chọn lại số a, b đã chọn nên c có 3 cách chọn)

Chọn số d có 2 cách (vì các chữ số đôi một khác nhau nên b ≠ a, d ≠ b, d ≠ c vậy d không chọn lại số a, b, c đã chọn nên d có 2 cách chọn)

Theo quy tắc nhân ta có số các số tự nhiên gồm 4 chữ số, các chữ số đều lớn hơn 5 và đôi một khác nhau là: 4.4.3.2 = 96 (số)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi \[\overline {abc} \] là số có 3 chữ số khác nhau và chia hết cho 3 nên ta có a + b + c chia hết cho 3 vậy a; b; c được lập từ các bộ số {1; 2; 3}; {1; 3; 5}; {2; 3; 4}; {3; 4; 5}. Mỗi bộ số đó ta có 6 số được lập

Vậy có tất cả 4.6 = 24 số.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n – 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hàng chục lớn hơn hoặc bằng \(1\) còn chữ số hàng đơn vị lớn hơn hoặc bằng 0.

TH1: b = 0 thì a {1; 2; 3; 4; 5; 6; 7; 8; 9}. Do đó có 9 số;

TH2: b = 1 thì a {2; 3; 4; 5; 6; 7; 8; 9}. Do đó có 8 số;

TH3: b = 2 thì a {3; 4; 5; 6; 7; 8; 9}. Do đó có 7 số;

...

TH9: b = 8 thì a = 9. Do đó có 1 số;

TH10: b = 9 thì không có a thỏa mãn.

Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP