Câu hỏi:

03/09/2022 2,071

Từ các chữ số 0; 1; 2; 3; 4; 5; 8 lập được bao nhiêu số có ba chữ số đôi một khác nhau, chia hết cho 2 và 3

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Số chia hết cho 2 và 3 là số chẵn và có tổng các chữ số của nó chia hết cho 3.

Gọi \[\overline {abc} \]là số tự nhiên có ba chữ số đôi một khác nhau, chia hết cho 2 và 3 được lập từ các chữ số 0; 1; 2; 3; 4; 5; 8

Trường hợp 1: c = 0

Khi đó các chữ số a; b được lập từ các tập {1; 2}; {1; 5}; {1; 8}; {2; 4}; {4; 5}; {4; 8}

Trường hợp này có 6.2! = 12 số.

Trường hợp 2: c = 2

Khi đó các chữ số a; b được lập từ các tập {1; 0}; {4; 0}; {1; 3}; {3; 4}; {5; 8}.

Trường hợp này có 2 + 3.2! = 8 số

Trường hợp 3: c = 4

Khi đó các chữ số a; b được lập từ các tập {2; 0}; {2; 3}; {3; 5}; {3; 8}.

Trường hợp này có 1 + 3.2! = 7 số.

Trường hợp 4: c = 8

Khi đó các chữ số a; b được lập từ các tập {1; 0}; {4; 0}; {1; 3}; {2; 5}; {3; 4}.

Trường hợp này có 2 + 3.2! = 8 số.

Vậy có tất cả 12 + 8 + 7 + 8 = 35 số cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi \[\overline {abc} \] là số có 3 chữ số khác nhau và chia hết cho 3 nên ta có a + b + c chia hết cho 3 vậy a; b; c được lập từ các bộ số {1; 2; 3}; {1; 3; 5}; {2; 3; 4}; {3; 4; 5}. Mỗi bộ số đó ta có 6 số được lập

Vậy có tất cả 4.6 = 24 số.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n – 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hàng chục lớn hơn hoặc bằng \(1\) còn chữ số hàng đơn vị lớn hơn hoặc bằng 0.

TH1: b = 0 thì a {1; 2; 3; 4; 5; 6; 7; 8; 9}. Do đó có 9 số;

TH2: b = 1 thì a {2; 3; 4; 5; 6; 7; 8; 9}. Do đó có 8 số;

TH3: b = 2 thì a {3; 4; 5; 6; 7; 8; 9}. Do đó có 7 số;

...

TH9: b = 8 thì a = 9. Do đó có 1 số;

TH10: b = 9 thì không có a thỏa mãn.

Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay