Câu hỏi:

04/09/2022 1,651 Lưu

Xác định số phần tử của không gian mẫu các kết quả có thể xảy ra đối với mặt xuất hiện của một xúc xắc sau 3 lần gieo

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta xem việc thực hiện gieo xúc xắc 3 lần là một công việc gồm 3 giai đoạn:

Giai đoạn 1 : Gieo xúc xắc lần 1: có 6 kết quả có thể xảy ra.

Giai đoạn 2 : Gieo xúc xắc lần 3: có 6 kết quả có thể xảy ra.

Giai đoạn 3 : Gieo xúc xắc lần 3: có 6 kết quả có thể xảy ra.

Do đó, khi thực hiện gieo xúc xắc 3 lần thì có 6.6.6 = 216 có thể xảy ra

Vậy không gian mẫu có 216 phần tử

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: n (Ω) = 6.6 = 36

Gọi D là biến cố sau hai lần gieo được số chấm giống nhau.

D = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

n (D) = 6

Vậy xác suất của biến cố D là : \(\frac{{n(D)}}{{n(\Omega )}}\) = \(\frac{6}{{36}}\)= \(\frac{1}{6}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu của trò chơi trên là tập hợp Ω = \[{\rm{\{ }}(i;j)\left| {i;j = 1;2;3;4;5;6\} } \right.\]

Trong đó (i; j) là kết quả” lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”

n (Ω) = 36

Mặt khác , ta có: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}

n (A) = 11

Vậy xác suất của biến cố A là : \(\frac{{n(A)}}{{n(\Omega )}}\) = \(\frac{{11}}{{36}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP