Câu hỏi:

04/09/2022 3,724 Lưu

Gieo xúc xắc 2 lần liên tiếp . Xét biến cố A: “Sau hai lần gieo có ít nhất 1 mặt 6 chấm”. Tính xác suất biến cố A

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu của trò chơi trên là tập hợp Ω = \[{\rm{\{ }}(i;j)\left| {i;j = 1;2;3;4;5;6\} } \right.\]

Trong đó (i; j) là kết quả” lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”

n (Ω) = 36

Mặt khác , ta có: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}

n (A) = 11

Vậy xác suất của biến cố A là : \(\frac{{n(A)}}{{n(\Omega )}}\) = \(\frac{{11}}{{36}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: n (Ω) = 6.6 = 36

Gọi D là biến cố sau hai lần gieo được số chấm giống nhau.

D = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

n (D) = 6

Vậy xác suất của biến cố D là : \(\frac{{n(D)}}{{n(\Omega )}}\) = \(\frac{6}{{36}}\)= \(\frac{1}{6}\).

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có: n (Ω) = 6.6 =36

Gọi M là biến cố tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.

⇒M = {(1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2)}n(M) = 7

Vậy xác suất của biến cố F là : \(\frac{{n(M)}}{{n(\Omega )}}\) = \(\frac{7}{{36}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP