Câu hỏi:

11/07/2024 1,629

Danh sách đội dự thi trực tuyến về “An toàn giao thông” của học sinh lớp 7A được đánh số thứ tự từ 1 đến 25, trong đó bạn Minh có số thứ tự là 15. Chọn ngẫu nhiên một học sinh trong đội đó. Tìm số phần tử của tập hợp D gồm các kết quả có thể xảy ra đối với số thứ tự của học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

“Số thứ tự của học sinh được chọn ra là số thứ tự của bạn Minh”;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Tập hợp D gồm các kết quả có thể xảy ra đối với số thứ tự của học sinh được chọn ra là: D = {1, 2, 3,..., 24, 25}.

Số các phần tử của tập hợp D là 25.

Do bạn Minh có số thứ tự là 15 nên trong các số, 1, 2, 3,..., 24, 25 có 1 kết quả thuận lợi cho biến cố “Số thứ tự của học sinh được chọn ra là số thứ tự của bạn Minh” là: 15, (lấy ra từ tập hợp D = {1, 2, 3,..., 24, 25}).

Do đó, xác xuất của biến cố “Số thứ tự của học sinh được chọn ra là số thứ tự của bạn Minh”\(\frac{1}{{25}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong các số 1, 2, 3, 4, 5, 6, có một số là số chia 5 dư 2 là: 2.

Vậy có một kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 5 dư 2” là: mặt 2 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).

Do đó, xác xuất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 5 dư 2”\(\frac{1}{6}\).

Lời giải

Lời giải

Ta có: 20 + 21 = 41; 21 + 22 = 43; 22 + 23 = 45; …; 44 + 45 = 99.

Do đó, các kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là tổng của hai số tự nhiên liên tiếp” là: 41; 43; 45; …; 99.

Số các kết quả thuận lợi của biến cố đó là:

(99 – 41) : 2 + 1 = 30 (kết quả).

Vì thế xác suất của biến cố đó là: \(\frac{{30}}{{59}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP