CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Phần mở rộng là một tam giác vuông, có cạnh góc vuông bằng chiều cao của hình thang.

Số đo cạnh góc vuông còn lại bằng: \[414:23 = 18\left( {cm} \right)\]

\[18cm\] chính là hiệu số đo hai đáy của hình thang. Coi đáy bé hình thang gồm ba phần bằng nhau thì đáy lớn gồm \[5\]  phần. Hiệu số phần bằng nhau là: \[5{\rm{ }}--{\rm{ }}3{\rm{ }} = {\rm{ }}2{\rm{ }}\](phần)

Đáy lớn của hình thang bằng: \[\left( {18{\rm{ }}:{\rm{ }}2} \right){\rm{ }}x{\rm{ }}5{\rm{ }} = {\rm{ }}45{\rm{ }}\left( {cm} \right)\]

Đáy bé của hình thang bằng: \[45{\rm{ }}--{\rm{ }}18{\rm{ }} = {\rm{ }}27{\rm{ }}\left( {cm} \right)\]

Diện tích hình thang lúc đầu là: \[45.27 = 1215\left( {c{m^2}} \right)\]

Lời giải

Lời giải

Xét hai tam giác \[ADC\]\[BDC\], ta thấy hai tam giác đều có chiều cao bằng nhau và chung đáy DC nên diện tích tam giác \[ADC\] bằng diện tích tam giác\[BDC\]

Do \[{S_{ADC}}\; = {\rm{ }}{S_{DOC}}\; + {\rm{ }}{S_{AOD}}\;\]\[{S_{BDC}}\; = {\rm{ }}{S_{DOC\;}} + {\rm{ }}{S_{BOC}}\] nên \[{S_{AOD}}\; = {S_{BOC}}\; = 10\]\[(c{m^2})\]

Tam giác \[AOD\] và tam giác \[DOC\] đều có chung chiều cao hạ từ\[D\], \[{S_{DOC}}\; = 2.{S_{AOD}}\]

Suy ra  \[OC = 2.AO\]

Tam giác \[ABO\] và tam giác \[BOC\]có chung chiều cao hạ từ\[B\], có đáy \[OC\] gấp 2 lần đáy\[AO\], suy ra \[{S_{BOC}}\; = {\rm{ }}2{S_{AOB}}\]

Do đó \[{S_{ABO}}\; = {S_{BOC}}\; = 5\]\[(cm)\].

Ta có \[{S_{ABCD}}\; = {S_{AOB}}\; + {\rm{ }}{S_{AOD}}\; + {S_{DOC}}\; + {S_{BOC}}\; = 5 + 10 + 20 + 10 = 45\]\[(c{m^2})\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay