Câu hỏi:

02/10/2022 788 Lưu

Một căn phòng hình chữ nhật dài 680cm, rộng  480cm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Ta có: 
Gọi chiều dài viên gạch là x.
Để lát kín căn phòng mà không có có viên gạch nào bị cắt xén thì x phải là ước của chiều dài và chiều rộng căn phòng 
Hay \[680 \vdots x\] và \[480 \vdots x\]
⇒x∈ ƯC(680; 480)
Để x là lớn nhất ⇒x = ƯCLN(680; 480)
Ta có: 680 = 23.5.17; 480 = 25.3.5
⇒x = ƯCLN(680; 480) = 23.5 = 40
Vậy để lát kín căn phòng mà không có viên gạch nào bị cắt xén thì độ dài cạnh viên gạch lớn nhất là 40 cm.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

Ta có: 
Gọi số nhóm chia được là x (nhóm) 
Vì có 18 nam mà số nam ở mỗi nhóm bằng nhau nên\[18 \vdots x\]
Vì có 24  nữ mà số nữ ở mỗi nhóm bằng nhau nên \[24 \vdots x\]
⇒ x\[ \in \]ƯC(18; 24)
Vì x  là lớn nhất nên x = ƯCLN(18; 24)
Ta có: 18 = 2.32 ; 24 = 23.3
⇒x = ƯCLN(18; 24) =2.3 = 6
Vậy chia được nhiều nhất là 6  nhóm .

Đáp án cần chọn là: D

Lời giải

Trả lời:

ƯCLN(48, 108) = 12

\[ \Rightarrow \frac{{48}}{{108}} = \frac{4}{9}\]

ƯCLN(80, 180) = 20

\[ \Rightarrow \frac{{80}}{{180}} = \frac{4}{9}\]

ƯCLN(60, 130) = 10

\[ \Rightarrow \frac{{60}}{{130}} = \frac{6}{{13}}\]

ƯCLN(135, 270) = 135

\[ \Rightarrow \frac{{135}}{{270}} = \frac{1}{2}\]

Phân số  \[\frac{4}{9}\]  bằng các phân số \[\frac{{48}}{{108}};\frac{{80}}{{180}}\].

Vậy có 2 phân số bằng \[\frac{4}{9}\]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP