Câu hỏi:

30/10/2022 363

Người ta dùng những chiếc cọc để rào một mảnh vườn hình chữ nhật sao cho mỗi góc vườn đều có một chiếc cọc và hai cọc liên tiếp cắm cách nhau 0,2 m. Biết rằng số cọc dùng để rào hết chiều dài của vườn nhiều hơn số cọc dùng để rào hết chiều rộng là 30 chiếc. Gọi số cọc dùng để rào hết chiều rộng là a. Tìm đa thức biểu thị diện tích của mảnh vườn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có số cọc để rào hết chiều rộng là a (cọc) (a ).

Suy ra số cọc để rào hết chiều dài là a + 30 (cọc).

Khoảng cách giữa hai cọc liên tiếp là 0,2 m.

Giữa a cọc sẽ có a – 1 khoảng giữa hai cọc.

Do đó là độ dài của chiều rộng mảnh vườn là: 0,2(a – 1) (m)

Giữa a + 30 cọc sẽ có a + 29 khoảng giữa hai cọc.

Do đó là độ dài của chiều dài mảnh vườn là: 0,2(a + 29) (m).

Khi đó diện tích của mảnh vườn là:

0,2(a – 1). 0,2(a + 29)

= 0,04(a – 1)(a + 29)

= 0,04(a2 + 29a – a – 29)

= 0,04(a2 + 28a – 29)

= 0,04a2 + 1,12a – 1,16.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

h(x) = f(x).g(x) + 2x – 5

= (x2 + 2x + a)(2x + 3) + 2x – 5

= 2x3 + 4x2 + 2ax + 3x2 + 6x + 3a + 2x – 5

= 2x3 + 7x2 + (2a + 8)x + 3a – 5

Khi đó h(1) = 2 + 7 + 2a + 8 + 3a – 5 = 5a + 10 = 0

Hay a = −10 : 5 = −2.

Vậy với a = −2 thì thỏa mãn yêu cầu bài toán.

Câu 2

Lời giải

Đáp án đúng là: C

f(x) = (x – 5)(2x + 3) – 2x(x – 3) + x + 7

= 2x2 – 10x + 3x – 15 – 2x2 + 6x + x + 7

= (2x2 – 2x2) + (−10x + 3x + 6x + x) – 15 + 7

= – 8.

g(x) = (x2 – 5x + 7)(x – 2) – (x2 – 3x)(x – 4) – 5(x – 2)

= x3 – 5x2 + 7x – 2x2 + 10x – 14 – (x3 – 3x2 – 4x2 + 12x) – 5x + 10

= x3 – 5x2 + 7x – 2x2 + 10x – 14 – x3 + 3x2 + 4x2 – 12x – 5x + 10

= (x3 – x3) + (−5x2 – 2x2 + 3x2 + 4x2) + (7x + 10x – 12x – 5x) + (– 14 + 10)

= – 4

Vì – 8 < – 4 nên f(x) < g(x).

Vậy ta chọn đáp án C.