Câu hỏi:

05/11/2022 2,509 Lưu

Cho tập A có n phần tử (n ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

A. n.k;
B. n.(n – 1).(n – 2)…(n – k + 1);
C.\(\frac{n}{k}\);
D.\(\frac{k}{n}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta kí hiệu \(A_n^k\) là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n).

Ta có: \(A_n^k = n\left( {n - 1} \right)...\left( {n - k + 1} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Theo quy tắc cộng ta có số cách chọn một học sinh làm lớp trưởng là:

31 + 16 = 47 (cách).

Câu 2

A. n;
B. n + 1;
C. n – 1;
D. n!.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Số các hoán vị của n phần tử là n!.

Câu 4

A.\(C_n^k\);
B.\(C_k^n\);
C.\(A_n^k\);
D. \(A_k^n\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. (a + b)4 = \(C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} + C_4^3a.{b^3} + C_4^4.{b^4}\);
B. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\);
C. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} - C_4^3a.{b^3} + C_4^4.{b^4}\);
D. (a + b)4 = \( - C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP