Câu hỏi:

05/11/2022 7,325

Gieo một con xúc xắc hai lần. Xác suất để số chấm xuất hiện sau hai lần gieo có tổng bằng 8 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Không gian mẫu là:

Ω = {(i; j) | i, j = 1, 2, …, 6}

Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36

Gọi biến cố A: “số chấm xuất hiện sau hai lần gieo có tổng bằng 8”

A = {(2; 6); (6; 2); (3; 5); (5; 3); (4; 4)}

n(A) = 5

P(A) = \(\frac{5}{{36}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Gieo ba con xúc xắc. Xác suất để số chấm xuất hiện trên ba con xúc xắc như nhau là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu là:

Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}

Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.

Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).

Do đó, n(A) = 6.

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu là:

Ω = {(i; j) | i, j = 1, 2, …, 6}

Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36

Gọi biến cố A: “Tích hai số chấm xuất hiện khi gieo là một số chẵn”.

TH1: Lần 1 gieo được số chẵn chấm là 2; 4 và 6 thì lần 2 gieo được số nào cũng được: \(C_3^1.C_6^1 = 18\)

TH2: Lần 1 gieo được số lẻ chấm là 1; 3 và 5 thì lần 2 phải gieo được số chẵn chấm: \(C_3^1.C_3^1 = 9\)

Do đó, n(A) = 18 + 9 = 27

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{27}}{{36}} = 0,75\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay