5 câu Trắc nghiệm Toán 10 Cánh diều Xác suất của biến cố trong một số trò chơi đơn giản (Phần 2) có đáp án (Vận dụng)
29 người thi tuần này 4.6 1.7 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j) | i, j = 1, 2, …, 6}
Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36
Gọi biến cố A: “Tích hai số chấm xuất hiện khi gieo là một số chẵn”.
TH1: Lần 1 gieo được số chẵn chấm là 2; 4 và 6 thì lần 2 gieo được số nào cũng được: \(C_3^1.C_6^1 = 18\)
TH2: Lần 1 gieo được số lẻ chấm là 1; 3 và 5 thì lần 2 phải gieo được số chẵn chấm: \(C_3^1.C_3^1 = 9\)
Do đó, n(A) = 18 + 9 = 27
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{27}}{{36}} = 0,75\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}
Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.
Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).
Do đó, n(A) = 6.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Không gian mẫu là:
Ω = {(i; j) | i, j = 1, 2, …, 6}
Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36
Gọi biến cố A: “số chấm xuất hiện sau hai lần gieo có tổng bằng 8”
⇒ A = {(2; 6); (6; 2); (3; 5); (5; 3); (4; 4)}
⇒ n(A) = 5
⇒ P(A) = \(\frac{5}{{36}}\).
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Không gian mẫu là:
Ω = {(i; j) | i, j = 1, 2, …, 6}
Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36
Gọi biến cố A: “tích số chấm xuất hiện ở hai lần là một số tự nhiên lẻ”
Các kết quả thuận lợi cho A là:
(1, 1); (1, 3); (1, 5); (3, 1); (3, 3); (3, 5); (5, 1); (5, 3); (5, 5)
⇒ n(A) = 9
⇒ P(A) = \(\frac{9}{{36}} = 0,25\).
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}
Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.
Gọi biến cố A: “tích số chấm xuất hiện ở ba lần là một số tự nhiên chẵn”
Số các kết quả thuận lợi cho A là:
Số cách chọn i là 3 (cách) trong tập hợp {1; 3; 5}
Số cách chọn j là 3 (cách) trong tập hợp {1; 3; 5}
Số cách chọn k là 3 (cách) trong tập hợp {1; 3; 5}
⇒ n(A) = 3 . 3 . 3 = 27
⇒ P(A) = \(\frac{{27}}{{36}} = \frac{3}{4}\) = 0,75.