12 Bài tập Tìm giá trị lớn nhất, nhỏ nhất của hàm số bậc hai (có lời giải)

25 người thi tuần này 4.6 202 lượt thi 12 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Hàm số y = –x2 + 4x + 3 có giá trị lớn nhất là bao nhiêu ?

Lời giải

Hướng dẫn giải:

Xét hàm số: y = –x2 + 4x + 3 có a = –1, b = 4, c = 3.

Ta có:

a = –1 < 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{4^2} - 4.( - 1).3} \right]}}{{4.( - 1)}} = 7\)

\(\frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.( - 1)}} = 2\)

Vậy hàm số y = –x2 + 4x + 3 có giá trị lớn nhất là 7 tại x = 2.

Câu 2

Tìm giá trị nhỏ nhất của hàm số y = x2 + 2x – 4.

Lời giải

Hướng dẫn giải:

Xét hàm số: y = x2 + 2x – 4 có a = 1, b = 2, c = – 4.

Ta có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{2^2} - 4.1.( - 4)} \right]}}{{4.1}} = - 5\)

\(\frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.1}} = - 1\)

Vậy hàm số y = x2 + 2x – 4 có giá trị nhỏ nhất là –5 tại x = – 1.

Câu 3

Giá trị lớn nhất của hàm số y = –3x2 – 2x + 3 là:

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Xét hàm số: y = –3x2 – 2x + 3 có a = –3, b = –2, c = 3.

Ta có:

a = –3 < 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 2)}^2} - 4.( - 3).3} \right]}}{{4.( - 3)}} = \frac{{10}}{3}\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 3)}} = - \frac{1}{3}\)

Vậy hàm số y = –3x2 – 2x + 3 có giá trị lớn nhất là \(\frac{{10}}{3}\) tại x = \( - \frac{1}{3}\).

Câu 4

Giá trị lớn nhất của hàm số y = –2x2 – 12x là:

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số: y = –2x2 – 12x có a = –2, b = –12, c = 0.

Ta có:

a = –2 < 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 12)}^2} - 4.( - 2).0} \right]}}{{4.( - 2)}} = 18\).

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 12)}}{{2.( - 2)}} = - 3\).

Vậy hàm số y = –2x2 – 12x có giá trị lớn nhất là 18 tại x = – 3.

Câu 5

Giá trị nhỏ nhất của hàm số y = x2 – 5x + 10 là:

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Xét hàm số: y = x2 – 5x + 10 có a = 1, b = –5, c = 10

Ta có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 5)}^2} - 4.1.10} \right]}}{{4.1}} = \frac{{15}}{4}\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 5)}}{{2.1}} = \frac{5}{2}\)

Vậy hàm số y = x2 – 5x + 10 có giá trị nhỏ nhất là \(\frac{{15}}{4}\) tại x = \(\frac{5}{2}\).

Câu 6

Giá trị nhỏ nhất của hàm số y = 5x2 – x – 4 là một

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Xét hàm số: y = 5x2 – x – 4 có a = 5, b = – 1, c = – 4

Ta có:

a = 5 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 1)}^2} - 4.5.( - 4)} \right]}}{{4.5}} = - \frac{{81}}{{20}}\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 1)}}{{2.5}} = \frac{1}{{10}}\)

Vậy hàm số y = 5x2 – x – 4 có giá trị nhỏ nhất là \( - \frac{{81}}{{20}}\) tại x = \(\frac{1}{{10}}\).

Mà \( - \frac{{81}}{{20}}\) là một số hữu tỉ âm, do đó đáp án A đúng.

Câu 7

Hàm số y = 4x2 – 24x + 3 đạt giá trị nhỏ nhất tại

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số: y = 4x2 – 24x + 3 có a = 4, b = –24, c = 3

Ta có:

a = 4 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 24)}^2} - 4.4.3} \right]}}{{4.4}} = - 33\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 24)}}{{2.4}} = 3\)

Vậy hàm số y = 4x2 – 24x + 3 có giá trị nhỏ nhất là –33 tại x = 3.

Câu 8

Hàm số nào sau đây đạt giá trị nhỏ nhất tại x = 5 ?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số: y = x2 – 10x + 9 có a = 1, b = –10, c = 9

Ta có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 10)}^2} - 4.1.9} \right]}}{{4.1}} = - 16\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 10)}}{{2.1}} = 5\)

Vậy hàm số y = x2 – 10x + 9 có giá trị nhỏ nhất là –16 tại x = 5.

Câu 9

Hàm số nào sau đây đạt giá trị lớn nhất tại x = 3 ?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Xét hàm số: y = –x2 + 6x + 5 có a = –1, b = 6, c = 5

Ta có:

a = –1 < 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{6^2} - 4.( - 1).5} \right]}}{{4.( - 1)}} = 14\)

\(\frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 1)}} = 3\)

Vậy hàm số y = –x2 + 6x + 5 có giá trị lớn nhất là 14 tại x = 3.

Câu 10

Hàm số nào sau đây đạt giá trị lớn nhất là \(\frac{{29}}{4}\) ?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Xét hàm số: y = –x2 + 3x + 5 có a = –1, b = 3, c = 5

Ta có:

a = –1 < 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{3^2} - 4.( - 1).5} \right]}}{{4.( - 1)}} = \frac{{29}}{4}\)

\(\frac{{ - b}}{{2a}} = \frac{{ - 3}}{{2.( - 1)}} = \frac{3}{2}\)

Vậy hàm số y = –x2 + 3x + 5 có giá trị lớn nhất là \(\frac{{29}}{4}\) tại x = \(\frac{3}{2}\).

Câu 11

Cặp hàm số nào sau đây có giá trị tuyệt đối của giá trị nhỏ nhất bằng nhau?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Loại ngay đáp án B và D vì hệ số a < 0 nên không tồn tại giá trị nhỏ nhất.

Xét hàm số: y = x2 – 2x + 4 có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 2)}^2} - 4.1.4} \right]}}{{4.1}} = 3\)

Do đó, hàm số y = x2 – 2x + 4 có giá trị nhỏ nhất là 3.

Xét hàm số: y = x2 + 2x – 2 có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{2^2} - 4.1.( - 2)} \right]}}{{4.1}} = - 3\)

Do đó, hàm số y = x2 + 2x – 2 có giá trị nhỏ nhất là –3.

Ta có: |3| = |–3| = 3.

Câu 12

Hàm số nào sau đây đạt giá trị nhỏ nhất là \(\frac{{ - 13}}{4}\) ?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số: y = x2 – x – 3 có a = 1, b = –1, c = –3

Ta có:

a = 1 > 0

\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - \left[ {{{( - 1)}^2} - 4.1.( - 3)} \right]}}{{4.1}} = - \frac{{13}}{4}\)

\(\frac{{ - b}}{{2a}} = \frac{{ - ( - 1)}}{{2.1}} = \frac{1}{2}\)

Vậy hàm số y = x2 – x – 3 có giá trị nhỏ nhất là \(\frac{{ - 13}}{4}\) tại x = \(\frac{1}{2}\).

4.6

40 Đánh giá

50%

40%

0%

0%

0%