Bộ 5 đề thi cuối kì 1 Toán 10 Cánh diều cấu trúc mới có đáp án - Đề 01
47 người thi tuần này 4.6 302 lượt thi 22 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Mệnh đề phủ định của mệnh đề P là .
Câu 2
A. \(A = \left\{ {2;4} \right\}\).
Lời giải
Đáp án đúng là: A
Ta có \({x^2} - 6x + 8 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 2\end{array} \right.\).
Do đó \(A = \left\{ {2;4} \right\}\).
Câu 3
A. \(A\backslash B = \left\{ {2;4} \right\}\).
Lời giải
Đáp án đúng là: B
\(A\backslash B = \left\{ {1;3;5} \right\}\).
Câu 4
A. \(4 \le m < 7\).
Lời giải
Đáp án đúng là: B
Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m + 2 \le 4\\m \ge 7\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 2\\m \ge 7\end{array} \right.\).
Do đó để \(A \cap B\) là một khoảng thì \(2 < m < 7\).
Câu 5
A. \(\left( {2\,;\,1} \right)\).
Lời giải
Đáp án đúng là: B
Thay lần lượt tọa độ của các điểm đã cho vào bất phương trình \(x - 4y + 5 > 0\), nếu thỏa mãn thì điểm đó thuộc miền nghiệm của bất phương trình đã cho. Và ta thấy B là đáp án đúng.
Câu 6
A. \(\left( {0;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(a > 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(I\left( {0;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. phương trình \(f\left( x \right) = 0\) vô nghiệm.
B. \(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \(S = \left( { - \infty ;2} \right] \cup \left[ {5; + \infty } \right)\).
B. \(S = \left( { - \infty ;2} \right) \cup \left( {5; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. \[{a^2} = {b^2} + {c^2} + 2bc\cos A\].
B. \[{a^2} = {b^2} + {c^2} - 2bc\cos A\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


