Cho biểu thức \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\). Tính giá trị của biểu thức \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}.\)
Quảng cáo
Trả lời:
Trả lời: 1
Ta có \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\)
\( \Leftrightarrow 4\tan x + 2\cot x = 2\tan x + 2\cot x + 6\)
\( \Leftrightarrow \tan x = 3\)
\( \Leftrightarrow \frac{{\sin x}}{{\cos x}} = 3\)\( \Leftrightarrow \sin x = 3\cos x\).
Do đó \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}\)\( = \frac{{6\cos x + \cos x}}{{9\cos x - 2\cos x}}\)\( = \frac{{7\cos x}}{{7\cos x}} = 1\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) Đ, c) Đ, d) Đ
a) \(S = \sqrt {p\left( {p - 13} \right)\left( {p - 14} \right)\left( {p - 15} \right)} \) với \(p = \frac{{AB + AC + BC}}{2}\).
b) Vì \(p = \frac{{AB + AC + BC}}{2} = \frac{{14 + 13 + 15}}{2} = 21\).
Nên \(S = \sqrt {21\left( {21 - 13} \right)\left( {21 - 14} \right)\left( {21 - 15} \right)} = 84\). Suy ra \(r = \frac{S}{p} = \frac{{84}}{{21}} = 4\).
c) Có \(S = \frac{1}{2}{h_C}.AB \Rightarrow {h_C} = \frac{{2S}}{{AB}} = \frac{{2.84}}{{14}} = 12\).
d) Ta có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{{14}^2} + {{13}^2} - {{15}^2}}}{{2.14.13}} = \frac{5}{{13}} > 0\) \( \Rightarrow 0^\circ < \widehat A < 90^\circ \).
Do \(AC < AB < BC \Rightarrow \widehat B < \widehat C < \widehat A\) mà \(0^\circ < \widehat A < 90^\circ \) nên \(0^\circ < \widehat A,\widehat B,\widehat C < 90^\circ \).
Do đó tam giác \(ABC\) có 3 góc là góc nhọn.
Lời giải
Trả lời: 10
Miền nghiệm của hệ bất phương trình (I) là miền tam giác \(ABC\) với \(A\left( {4;1} \right),B\left( {8;3} \right),C\left( {2;3} \right)\).
Ta có \(2x - 5y + m \ge 0 \Leftrightarrow m \ge - 2x + 5y\).
Đặt \(F = - 2x + 5y\).
Tính giá trị của \(F = - 2x + 5y\) tại các cặp số \(\left( {x;y} \right)\) là tọa độ của các đỉnh tam giác \(ABC\), ta được:
\(F\left( {4;1} \right) = - 2.4 + 5.1 = - 3\); \(F\left( {8;3} \right) = - 2.8 + 5.3 = - 1\); \(F\left( {2;3} \right) = - 2.2 + 5.3 = 11\).
Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thỏa mãn hệ bất phương trình đã cho thì \(m \ge \max F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).
Vậy trong đoạn \(\left[ { - 20;20} \right]\) thì \(m \in \left\{ {11;12;...;20} \right\}\) có 10 giá trị nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {0;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.