Câu hỏi:

04/11/2025 369 Lưu

Cho tam giác \(ABC\) có hai đường trung tuyến \(BN,CP\). Khi đó:

a) \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \vec 0\).

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  = 3\overrightarrow {BN} \).

c) \(\overrightarrow {AB}  =  - \frac{2}{3} \cdot \overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

d) \(\overrightarrow {BC}  =  - \frac{2}{3}\overrightarrow {CP}  + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ

a) Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \vec 0 \Rightarrow \overrightarrow {GB}  + \overrightarrow {GC}  =  - \overrightarrow {GA} \)

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BN} \).

c) \(\overrightarrow {AB}  = \overrightarrow {GB}  - \overrightarrow {GA}  = \overrightarrow {GB}  + (\overrightarrow {GB}  + \overrightarrow {GC} )\)\( = 2\overrightarrow {GB}  + \overrightarrow {GC}  =  - 2 \cdot \frac{2}{3} \cdot \overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

d) \(\overrightarrow {BC}  = \overrightarrow {GC}  - \overrightarrow {GB}  =  =  - \frac{2}{3}\overrightarrow {CP}  + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a > 0.\)  

B. \(a < 0.\) 
C. \(a = 1.\) 
D. \(a = 2.\)

Lời giải

Đáp án đúng là: B

Bề lõm hướng xuống \(a < 0.\)

Câu 2

A. \(S = \left( { - \infty ;2} \right] \cup \left[ {5; + \infty } \right)\). 

B. \(S = \left( { - \infty ;2} \right) \cup \left( {5; + \infty } \right)\).

C. \(S = \left( {2;5} \right)\).  
D. \(S = \left[ {2;5} \right]\).

Lời giải

Đáp án đúng là: C

\(2{x^2} - 14x + 20 < 0\)\( \Leftrightarrow 2 < x < 5\).

Vậy \(S = \left( {2;\,5} \right)\).