Câu hỏi:

04/11/2025 12 Lưu

Cho hàm số \(y =  - {x^2} + 2x - 5\). Khi đó:

a) Tập xác định: \(D = \mathbb{R}\).

b) Tọa độ đỉnh \(I\) của parabol: \(I(1; - 4)\).

c) Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

d) Giá trị lớn nhất của hàm số là \({y_{\max }} =  - 4\), khi \(x = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

\(y =  - {x^2} + 2x - 5;(a =  - 1,b = 2,c =  - 5)\).

a) Tập xác định: \(D = \mathbb{R}\).

b) Tọa độ đỉnh \(I\) của parabol:

\({x_I} =  - \frac{b}{{2a}} = 1,{y_I} =  - {1^2} + 2.1 - 5 =  - 4\) hay \(I(1; - 4)\).

c) Định hướng cho bảng biến thiên: Do \(a =  - 1 < 0\) nên bề lõm parabol hướng xuống.

Bảng biến thiên:

Cho hàm số y =  -x mũ 2 + 2x - 5. Khi đó:  a) Tập xác định: (D = R).  b) Tọa độ đỉnh I của parabol: I(1; - 4). (ảnh 1)

Kết luận:

- Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

- Giá trị lớn nhất của hàm số là \({y_{\max }} =  - 4\), khi \(x = 1\). (Hàm số không có giá trị nhỏ nhất).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) Đ, c) Đ, d) Đ

a) \(S = \sqrt {p\left( {p - 13} \right)\left( {p - 14} \right)\left( {p - 15} \right)} \) với \(p = \frac{{AB + AC + BC}}{2}\).

b) Vì \(p = \frac{{AB + AC + BC}}{2} = \frac{{14 + 13 + 15}}{2} = 21\).

Nên \(S = \sqrt {21\left( {21 - 13} \right)\left( {21 - 14} \right)\left( {21 - 15} \right)}  = 84\). Suy ra \(r = \frac{S}{p} = \frac{{84}}{{21}} = 4\).

c) Có \(S = \frac{1}{2}{h_C}.AB \Rightarrow {h_C} = \frac{{2S}}{{AB}} = \frac{{2.84}}{{14}} = 12\).

d) Ta có \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{{14}^2} + {{13}^2} - {{15}^2}}}{{2.14.13}} = \frac{5}{{13}} > 0\) \( \Rightarrow 0^\circ  < \widehat A < 90^\circ \).

Do \(AC < AB < BC \Rightarrow \widehat B < \widehat C < \widehat A\) mà \(0^\circ  < \widehat A < 90^\circ \) nên \(0^\circ  < \widehat A,\widehat B,\widehat C < 90^\circ \).

Do đó tam giác \(ABC\) có 3 góc là góc nhọn.

Lời giải

Trả lời: 1

Ta có \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\)

\( \Leftrightarrow 4\tan x + 2\cot x = 2\tan x + 2\cot x + 6\)

\( \Leftrightarrow \tan x = 3\)

\( \Leftrightarrow \frac{{\sin x}}{{\cos x}} = 3\)\( \Leftrightarrow \sin x = 3\cos x\).

Do đó \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}\)\( = \frac{{6\cos x + \cos x}}{{9\cos x - 2\cos x}}\)\( = \frac{{7\cos x}}{{7\cos x}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {0;0} \right)\). 

B. \(\left( {1;1} \right)\). 
C. \(\left( { - 1;1} \right)\).   
D. \(\left( { - 1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP