Cho hàm số \(y = - {x^2} + 2x - 5\). Khi đó:
a) Tập xác định: \(D = \mathbb{R}\).
b) Tọa độ đỉnh \(I\) của parabol: \(I(1; - 4)\).
c) Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
d) Giá trị lớn nhất của hàm số là \({y_{\max }} = - 4\), khi \(x = 2\).
Cho hàm số \(y = - {x^2} + 2x - 5\). Khi đó:
a) Tập xác định: \(D = \mathbb{R}\).
b) Tọa độ đỉnh \(I\) của parabol: \(I(1; - 4)\).
c) Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
d) Giá trị lớn nhất của hàm số là \({y_{\max }} = - 4\), khi \(x = 2\).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) Đ, d) S
\(y = - {x^2} + 2x - 5;(a = - 1,b = 2,c = - 5)\).
a) Tập xác định: \(D = \mathbb{R}\).
b) Tọa độ đỉnh \(I\) của parabol:
\({x_I} = - \frac{b}{{2a}} = 1,{y_I} = - {1^2} + 2.1 - 5 = - 4\) hay \(I(1; - 4)\).
c) Định hướng cho bảng biến thiên: Do \(a = - 1 < 0\) nên bề lõm parabol hướng xuống.
Bảng biến thiên:
Kết luận:
- Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
- Giá trị lớn nhất của hàm số là \({y_{\max }} = - 4\), khi \(x = 1\). (Hàm số không có giá trị nhỏ nhất).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(a > 0.\)
Lời giải
Đáp án đúng là: B
Bề lõm hướng xuống \(a < 0.\)
Lời giải
Trả lời: 10
Miền nghiệm của hệ bất phương trình (I) là miền tam giác \(ABC\) với \(A\left( {4;1} \right),B\left( {8;3} \right),C\left( {2;3} \right)\).
Ta có \(2x - 5y + m \ge 0 \Leftrightarrow m \ge - 2x + 5y\).
Đặt \(F = - 2x + 5y\).
Tính giá trị của \(F = - 2x + 5y\) tại các cặp số \(\left( {x;y} \right)\) là tọa độ của các đỉnh tam giác \(ABC\), ta được:
\(F\left( {4;1} \right) = - 2.4 + 5.1 = - 3\); \(F\left( {8;3} \right) = - 2.8 + 5.3 = - 1\); \(F\left( {2;3} \right) = - 2.2 + 5.3 = 11\).
Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thỏa mãn hệ bất phương trình đã cho thì \(m \ge \max F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).
Vậy trong đoạn \(\left[ { - 20;20} \right]\) thì \(m \in \left\{ {11;12;...;20} \right\}\) có 10 giá trị nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(S = \left( { - \infty ;2} \right] \cup \left[ {5; + \infty } \right)\).
B. \(S = \left( { - \infty ;2} \right) \cup \left( {5; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
