Câu hỏi:

04/11/2025 23 Lưu

Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất \(Q\) sản phẩm là \({Q^2} + 300Q + 200000\) (nghìn đồng). Giả sử giá mỗi sản phẩm bán ra thị trường là 1200 nghìn đồng. Biết rằng xí nghiệp không bị lỗ khi sản xuất được số sản phẩm nằm trong đoạn \(\left[ {a;b} \right]\). Tính \(a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 900

Lợi nhuận của xí nghiệp khi bán hết \(Q\) sản phẩm là:

\(1200Q - \left( {{Q^2} + 300Q + 200000} \right) =  - {Q^2} + 900Q - 200000\).

Để xí nghiệp không bị lỗ thì \( - {Q^2} + 900Q - 200000 \ge 0 \Leftrightarrow 400 \le Q \le 500\).

Suy ra \(a = 400;b = 500\). Do đó \(a + b = 900\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a > 0.\)  

B. \(a < 0.\) 
C. \(a = 1.\) 
D. \(a = 2.\)

Lời giải

Đáp án đúng là: B

Bề lõm hướng xuống \(a < 0.\)

Lời giải

Trả lời: 10

Miền nghiệm của hệ bất phương trình (I) là miền tam giác \(ABC\) với \(A\left( {4;1} \right),B\left( {8;3} \right),C\left( {2;3} \right)\).

Có bao nhiêu giá trị nguyên của tham số m trong [ - 20;20) để bất phương trình 2x - 5y + m >= 0 nghiệm đúng với mọi cặp số (x;y) thỏa mãn hệ bất phương trình (I). (ảnh 1)

Ta có \(2x - 5y + m \ge 0 \Leftrightarrow m \ge  - 2x + 5y\).

Đặt \(F =  - 2x + 5y\).

Tính giá trị của \(F =  - 2x + 5y\) tại các cặp số \(\left( {x;y} \right)\) là tọa độ của các đỉnh tam giác \(ABC\), ta được:

\(F\left( {4;1} \right) =  - 2.4 + 5.1 =  - 3\); \(F\left( {8;3} \right) =  - 2.8 + 5.3 =  - 1\); \(F\left( {2;3} \right) =  - 2.2 + 5.3 = 11\).

Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi \(x,y\) thỏa mãn hệ bất phương trình đã cho thì \(m \ge \max F\) trên miền nghiệm của hệ bất phương trình đó hay \(m \ge 11\).

Vậy trong đoạn \(\left[ { - 20;20} \right]\) thì \(m \in \left\{ {11;12;...;20} \right\}\) có 10 giá trị nguyên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \left( { - \infty ;2} \right] \cup \left[ {5; + \infty } \right)\). 

B. \(S = \left( { - \infty ;2} \right) \cup \left( {5; + \infty } \right)\).

C. \(S = \left( {2;5} \right)\).  
D. \(S = \left[ {2;5} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP