Câu hỏi:
05/11/2022 269
Cho biết \(\sqrt 2 \) = 1,4142135…. Viết số gần đúng của \(\sqrt 2 \) theo quy tắc làm tròn đến hàng phần nghìn, ước lượng sai số tuyệt đối của số gần đúng ta được kết quả là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Quy tròn số \(\sqrt 2 \) đến hàng phần nghìn, ta được \(\sqrt 2 \) ≈ 1,414.
Vì \(\sqrt 2 \) < 1,415 nên ta có :
|\(\sqrt 2 \) – 1,414| < |1,415 – 1,414| = 0,001
Vậy sai số tuyệt đối không vượt quá 0,001.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Sắp xếp mẫu số liệu thành một dãy không giảm ta có:
7; 8; 8; 9; 9; 10
Ta có: n = 6
Số thứ tự thứ 3 là 8, số thứ tự thứ 4 là 9
Tứ phân vị thứ 2 (bằng trung vị) là: Q2 = (8 + 9) : 2 = 7,5
Tứ phân vị thứ nhất là trung vị của dãy số liệu: 7; 8; 8. Tức là Q1 = 8.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Trong các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 10 có 4 số nguyên tố là: 2, 3, 5, 7.
Gọi biến cố A: “lấy được một số nguyên tố”
Ta có:
n(Ω) = \(C_{10}^1 = 10\)
n(A) = \(C_4^1 = 4\)
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{4}{{10}} = 0,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.