Câu hỏi:

05/11/2022 2,384 Lưu

Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Xác suất 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có: n(Ω) = 12!

Biến cố A: “3 quyển sách thuộc cùng 1 môn không được xếp liền nhau”

Xếp 3 cuốn sách Toán kề nhau. Xem 3 cuốn sách Toán là 3 vách ngăn, giữa 3 cuốn sách Toán có 2 vị trí trống và thêm hai vị trí hai đầu, tổng cộng có 4 vị trí trống.

Bước 1. Chọn 3 vị trí trống trong 4 vị trí để xếp 3 cuốn Lý, có \(C_4^3 = 4\)cách.

Bước 2. Giữa 6 cuốn Lý và Toán có 5 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 7 vị trí trống. Chọn 3 vị trí trong 7 vị trí trống để xếp 3 cuốn Hóa, có \(C_7^3 = 35\) cách.

Bước 3. Giữa 9 cuốn sách Toán, Lý và Hóa đã xếp có 8 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 10 vị trí trống. Chọn 3 vị trí trong 10 vị trí trống để xếp 3 cuốn Sinh, có \(C_{10}^3 = 120\) cách. Vậy theo quy tắc nhân có:

4 . 35 . 120 = 16 800 cách.

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{16800}}{{12!}} = \frac{1}{{28512}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu là:

Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}

Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.

Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).

Do đó, n(A) = 6.

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Gọi đường chéo của hình vuông trên là x.

Độ dài đường chéo của hình vuông cạnh bằng 2 là: \(\overline x \) = \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).

Với \(\sqrt 2 \) ≈ 1,41, độ dài gần đúng của đường chéo hình vuông là: x = 2 . 1,41 = 2,82.

Ta có :

1,41 < \(\sqrt 2 \) < 1,42 2.1,41 < \(2\sqrt 2 \) < 2.1,42 2,82 < \(\overline x \) < 2,84

Do đó: \(\overline x \) – x = \(\overline x \) – 2,82 < 2,84 – 2,82 < 0,02

Suy ra ∆x = |\(\overline x \) – x| < 0,02.

Vậy độ dài gần đúng đường chéo của hình vuông là 2,82 với độ chính xác 0,02.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP