5 câu Trắc nghiệm Toán 10 Cánh diều Bài tập ôn tập cuối chương 6 (Phần 2) có đáp án (Vận dụng)
25 người thi tuần này 4.6 1.1 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Gọi đường chéo của hình vuông trên là x.
Độ dài đường chéo của hình vuông cạnh bằng 2 là: \(\overline x \) = \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Với \(\sqrt 2 \) ≈ 1,41, độ dài gần đúng của đường chéo hình vuông là: x = 2 . 1,41 = 2,82.
Ta có :
1,41 < \(\sqrt 2 \) < 1,42 ⇔ 2.1,41 < \(2\sqrt 2 \) < 2.1,42 ⇔ 2,82 < \(\overline x \) < 2,84
Do đó: \(\overline x \) – x = \(\overline x \) – 2,82 < 2,84 – 2,82 < 0,02
Suy ra ∆x = |\(\overline x \) – x| < 0,02.
Vậy độ dài gần đúng đường chéo của hình vuông là 2,82 với độ chính xác 0,02.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta nên chọn số trung vị làm đại diện là tốt nhất vì có sự chênh lệch lớn giữa các số liệu trong mẫu. Do đó ta có thể loại đáp án A và B.
Sắp xếp mẫu dữ liệu trên theo thứ tự không giảm, ta được:
20; 20; 20; 30; 60; 100; 150; 270; 440; 980
Vì cỡ mẫu n = 10 nên trung vị của mẫu là trung bình cộng của số liệu thứ 5 và thứ 6.
Do đó Me = (60 + 100) : 2 = 80.
Vậy ta chọn đáp án C.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Xét mẫu số liệu của Lan:
\(\overline {{x_L}} = \frac{{7.2 + 8.1 + 9.1 + 10.1}}{5} = 8,2\)
\({s_L}^2 = \frac{{2.{{(7 - 8,2)}^2} + {{(8 - 8,2)}^2} + {{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 1,36\)
Xét mẫu số liệu của Hoa:
\(\overline {{x_H}} = \frac{{6.1 + 7.1 + 9.2 + 10.1}}{5} = 8,2\)
\({s_H}^2 = \frac{{{{(6 - 8,2)}^2} + {{(7 - 8,2)}^2} + 2{{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 2,16\)
Do \(\overline {{x_L}} = \overline {{x_H}} \) mà sH2 > sL2 nên bạn Lan có kết quả kiểm tra đồng đều hơn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}
Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.
Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).
Do đó, n(A) = 6.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: n(Ω) = 12!
Biến cố A: “3 quyển sách thuộc cùng 1 môn không được xếp liền nhau”
Xếp 3 cuốn sách Toán kề nhau. Xem 3 cuốn sách Toán là 3 vách ngăn, giữa 3 cuốn sách Toán có 2 vị trí trống và thêm hai vị trí hai đầu, tổng cộng có 4 vị trí trống.
Bước 1. Chọn 3 vị trí trống trong 4 vị trí để xếp 3 cuốn Lý, có \(C_4^3 = 4\)cách.
Bước 2. Giữa 6 cuốn Lý và Toán có 5 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 7 vị trí trống. Chọn 3 vị trí trong 7 vị trí trống để xếp 3 cuốn Hóa, có \(C_7^3 = 35\) cách.
Bước 3. Giữa 9 cuốn sách Toán, Lý và Hóa đã xếp có 8 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 10 vị trí trống. Chọn 3 vị trí trong 10 vị trí trống để xếp 3 cuốn Sinh, có \(C_{10}^3 = 120\) cách. Vậy theo quy tắc nhân có:
4 . 35 . 120 = 16 800 cách.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{16800}}{{12!}} = \frac{1}{{28512}}\).