Câu hỏi:

13/07/2024 1,173

a) Hãy so sánh hai số tự nhiên sau đây, dùng kí hiệu “<” hay “>” để viết kết quả: m = 12 036 001 và n = 12 035 987.

b) Trên tia số (nằm ngang), trong hai điểm m và n, điểm nào nằm trước? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải, nhận thấy ở hàng chục triệu, triệu, trăm nghìn, chục nghìn có các chữ số giống nhau, nhưng ở hàng nghìn ta thấy 6 > 5 nên 12 036 001 > 12 035 987 do đó m > n.

b) Vì m > n hay n < m nên trên tia số (nằm ngang) điểm n nằm trước điểm m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) M = {x ∈ ℕ | 10 ≤ x < 15}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy M là tập hợp các số tự nhiên lớn hơn hoặc bằng 10 và nhỏ hơn 15, đó là các số: 10; 11; 12; 13; 14.

Vậy bằng cách cách liệt kê các phần tử, ta có: M = {10; 11; 12; 13; 14}.

b) K = {x ∈ ℕ* | x ≤ 3}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy K là tập hợp các số tự nhiên x khác 0 (do x ∈ ℕ*) thỏa mãn x nhỏ hơn hoặc bằng 3, do đó x là các số: 1; 2; 3.

Vậy bằng cách cách liệt kê các phần tử, ta có: K = {1; 2; 3}.

c) L = {x ∈ ℕ | x ≤ 3}

Theo cách nêu dấu hiệu đặc trưng ở trên, ta thấy L là tập hợp các số tự nhiên nhỏ hơn hoặc bằng 3, đó là các số: 0; 1; 2; 3.

Do đó bằng cách cách liệt kê các phần tử, ta có: L = {0; 1; 2; 3}.

Lời giải

Gọi số tiền cửa hàng đó thu được vào buổi sáng, buổi chiều và buổi tối lần lượt là a, b, c (a, b, c là các số tự nhiên)

Số tiền thu được vào buổi sáng nhiều hơn vào buổi chiều nên a > b (1)

Số tiền thu được vào buổi tối ít hơn vào buổi chiều nên c < b hay b > c (2)

Theo tính chất bắc cầu: vì a > b (theo 1), b > c (theo 2) nên a > c. Do đó số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.

Vậy số tiền thu được vào buổi sáng nhiều hơn vào buổi tối.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay